blob: ccb65f6df209ebd7687488832eeb64994c25b841 [file] [log] [blame]
David Sodman0c69cad2017-08-21 12:12:51 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//#define LOG_NDEBUG 0
18#undef LOG_TAG
19#define LOG_TAG "BufferLayer"
20#define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22#include "BufferLayer.h"
23#include "Colorizer.h"
24#include "DisplayDevice.h"
25#include "LayerRejecter.h"
26#include "clz.h"
27
28#include "RenderEngine/RenderEngine.h"
29
30#include <gui/BufferItem.h>
31#include <gui/BufferQueue.h>
32#include <gui/LayerDebugInfo.h>
33#include <gui/Surface.h>
34
35#include <ui/DebugUtils.h>
36
37#include <utils/Errors.h>
38#include <utils/Log.h>
39#include <utils/NativeHandle.h>
40#include <utils/StopWatch.h>
41#include <utils/Trace.h>
42
43#include <cutils/compiler.h>
44#include <cutils/native_handle.h>
45#include <cutils/properties.h>
46
47#include <math.h>
48#include <stdlib.h>
49#include <mutex>
50
51namespace android {
52
53BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
54 uint32_t w, uint32_t h, uint32_t flags)
55 : Layer(flinger, client, name, w, h, flags),
56 mTextureName(-1U),
57 mFormat(PIXEL_FORMAT_NONE),
58 mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
59 mBufferLatched(false),
60 mPreviousFrameNumber(0),
61 mUpdateTexImageFailed(false),
62 mRefreshPending(false) {
63#ifdef USE_HWC2
64 ALOGV("Creating Layer %s", name.string());
65#endif
66
67 mFlinger->getRenderEngine().genTextures(1, &mTextureName);
68 mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
69
70 if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false;
71
72 mCurrentState.requested = mCurrentState.active;
73
74 // drawing state & current state are identical
75 mDrawingState = mCurrentState;
76}
77
78BufferLayer::~BufferLayer() {
79 sp<Client> c(mClientRef.promote());
80 if (c != 0) {
81 c->detachLayer(this);
82 }
83
84 for (auto& point : mRemoteSyncPoints) {
85 point->setTransactionApplied();
86 }
87 for (auto& point : mLocalSyncPoints) {
88 point->setFrameAvailable();
89 }
90 mFlinger->deleteTextureAsync(mTextureName);
91
92#ifdef USE_HWC2
93 if (!mHwcLayers.empty()) {
94 ALOGE("Found stale hardware composer layers when destroying "
95 "surface flinger layer %s",
96 mName.string());
97 destroyAllHwcLayers();
98 }
99#endif
100}
101
102bool BufferLayer::isProtected() const
103{
104 const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
105 return (activeBuffer != 0) &&
106 (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
107}
108
109bool BufferLayer::isVisible() const {
110 return !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
111 (mActiveBuffer != NULL || mSidebandStream != NULL);
112}
113
114bool BufferLayer::isFixedSize() const {
115 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
116}
117
118status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) {
119 uint32_t const maxSurfaceDims =
120 min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
121
122 // never allow a surface larger than what our underlying GL implementation
123 // can handle.
124 if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) {
125 ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
126 return BAD_VALUE;
127 }
128
129 mFormat = format;
130
131 mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
132 mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
133 mCurrentOpacity = getOpacityForFormat(format);
134
135 mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
136 mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
137 mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
138
139 return NO_ERROR;
140}
141
142static constexpr mat4 inverseOrientation(uint32_t transform) {
143 const mat4 flipH(-1,0,0,0, 0,1,0,0, 0,0,1,0, 1,0,0,1);
144 const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
145 const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
146 mat4 tr;
147
148 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
149 tr = tr * rot90;
150 }
151 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
152 tr = tr * flipH;
153 }
154 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
155 tr = tr * flipV;
156 }
157 return inverse(tr);
158}
159
160/*
161 * onDraw will draw the current layer onto the presentable buffer
162 */
163void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip,
164 bool useIdentityTransform) const {
165 ATRACE_CALL();
166
167 if (CC_UNLIKELY(mActiveBuffer == 0)) {
168 // the texture has not been created yet, this Layer has
169 // in fact never been drawn into. This happens frequently with
170 // SurfaceView because the WindowManager can't know when the client
171 // has drawn the first time.
172
173 // If there is nothing under us, we paint the screen in black, otherwise
174 // we just skip this update.
175
176 // figure out if there is something below us
177 Region under;
178 bool finished = false;
179 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
180 if (finished || layer == static_cast<BufferLayer const*>(this)) {
181 finished = true;
182 return;
183 }
184 under.orSelf(renderArea.getTransform().transform(layer->visibleRegion));
185 });
186 // if not everything below us is covered, we plug the holes!
187 Region holes(clip.subtract(under));
188 if (!holes.isEmpty()) {
189 clearWithOpenGL(renderArea, 0, 0, 0, 1);
190 }
191 return;
192 }
193
194 // Bind the current buffer to the GL texture, and wait for it to be
195 // ready for us to draw into.
196 status_t err = mSurfaceFlingerConsumer->bindTextureImage();
197 if (err != NO_ERROR) {
198 ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
199 // Go ahead and draw the buffer anyway; no matter what we do the screen
200 // is probably going to have something visibly wrong.
201 }
202
203 bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure());
204
205 RenderEngine& engine(mFlinger->getRenderEngine());
206
207 if (!blackOutLayer) {
208 // TODO: we could be more subtle with isFixedSize()
209 const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize();
210
211 // Query the texture matrix given our current filtering mode.
212 float textureMatrix[16];
213 mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
214 mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
215
216 if (getTransformToDisplayInverse()) {
217 /*
218 * the code below applies the primary display's inverse transform to
219 * the texture transform
220 */
221 uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
222 mat4 tr = inverseOrientation(transform);
223
224 /**
225 * TODO(b/36727915): This is basically a hack.
226 *
227 * Ensure that regardless of the parent transformation,
228 * this buffer is always transformed from native display
229 * orientation to display orientation. For example, in the case
230 * of a camera where the buffer remains in native orientation,
231 * we want the pixels to always be upright.
232 */
233 sp<Layer> p = mDrawingParent.promote();
234 if (p != nullptr) {
235 const auto parentTransform = p->getTransform();
236 tr = tr * inverseOrientation(parentTransform.getOrientation());
237 }
238
239 // and finally apply it to the original texture matrix
240 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
241 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
242 }
243
244 // Set things up for texturing.
245 mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
246 mTexture.setFiltering(useFiltering);
247 mTexture.setMatrix(textureMatrix);
248
249 engine.setupLayerTexturing(mTexture);
250 } else {
251 engine.setupLayerBlackedOut();
252 }
253 drawWithOpenGL(renderArea, useIdentityTransform);
254 engine.disableTexturing();
255}
256
257bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
258 if (mBufferLatched) {
259 Mutex::Autolock lock(mFrameEventHistoryMutex);
260 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
261 }
262 mRefreshPending = false;
263 return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
264}
265
266#ifdef USE_HWC2
267void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
268 if (!mSurfaceFlingerConsumer->releasePendingBuffer()) {
269 return;
270 }
271
272 auto releaseFenceTime =
273 std::make_shared<FenceTime>(mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
274 mReleaseTimeline.updateSignalTimes();
275 mReleaseTimeline.push(releaseFenceTime);
276
277 Mutex::Autolock lock(mFrameEventHistoryMutex);
278 if (mPreviousFrameNumber != 0) {
279 mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime,
280 std::move(releaseFenceTime));
281 }
282}
283#endif
284
285Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
286 ATRACE_CALL();
287
288 if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
289 // mSidebandStreamChanged was true
290 mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
291 if (mSidebandStream != NULL) {
292 setTransactionFlags(eTransactionNeeded);
293 mFlinger->setTransactionFlags(eTraversalNeeded);
294 }
295 recomputeVisibleRegions = true;
296
297 const State& s(getDrawingState());
298 return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
299 }
300
301 Region outDirtyRegion;
302 if (mQueuedFrames <= 0 && !mAutoRefresh) {
303 return outDirtyRegion;
304 }
305
306 // if we've already called updateTexImage() without going through
307 // a composition step, we have to skip this layer at this point
308 // because we cannot call updateTeximage() without a corresponding
309 // compositionComplete() call.
310 // we'll trigger an update in onPreComposition().
311 if (mRefreshPending) {
312 return outDirtyRegion;
313 }
314
315 // If the head buffer's acquire fence hasn't signaled yet, return and
316 // try again later
317 if (!headFenceHasSignaled()) {
318 mFlinger->signalLayerUpdate();
319 return outDirtyRegion;
320 }
321
322 // Capture the old state of the layer for comparisons later
323 const State& s(getDrawingState());
324 const bool oldOpacity = isOpaque(s);
325 sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
326
327 if (!allTransactionsSignaled()) {
328 mFlinger->signalLayerUpdate();
329 return outDirtyRegion;
330 }
331
332 // This boolean is used to make sure that SurfaceFlinger's shadow copy
333 // of the buffer queue isn't modified when the buffer queue is returning
334 // BufferItem's that weren't actually queued. This can happen in shared
335 // buffer mode.
336 bool queuedBuffer = false;
337 LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
338 getProducerStickyTransform() != 0, mName.string(), mOverrideScalingMode,
339 mFreezeGeometryUpdates);
340 status_t updateResult =
341 mSurfaceFlingerConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync, &mAutoRefresh,
342 &queuedBuffer, mLastFrameNumberReceived);
343 if (updateResult == BufferQueue::PRESENT_LATER) {
344 // Producer doesn't want buffer to be displayed yet. Signal a
345 // layer update so we check again at the next opportunity.
346 mFlinger->signalLayerUpdate();
347 return outDirtyRegion;
348 } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
349 // If the buffer has been rejected, remove it from the shadow queue
350 // and return early
351 if (queuedBuffer) {
352 Mutex::Autolock lock(mQueueItemLock);
353 mQueueItems.removeAt(0);
354 android_atomic_dec(&mQueuedFrames);
355 }
356 return outDirtyRegion;
357 } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
358 // This can occur if something goes wrong when trying to create the
359 // EGLImage for this buffer. If this happens, the buffer has already
360 // been released, so we need to clean up the queue and bug out
361 // early.
362 if (queuedBuffer) {
363 Mutex::Autolock lock(mQueueItemLock);
364 mQueueItems.clear();
365 android_atomic_and(0, &mQueuedFrames);
366 }
367
368 // Once we have hit this state, the shadow queue may no longer
369 // correctly reflect the incoming BufferQueue's contents, so even if
370 // updateTexImage starts working, the only safe course of action is
371 // to continue to ignore updates.
372 mUpdateTexImageFailed = true;
373
374 return outDirtyRegion;
375 }
376
377 if (queuedBuffer) {
378 // Autolock scope
379 auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
380
381 Mutex::Autolock lock(mQueueItemLock);
382
383 // Remove any stale buffers that have been dropped during
384 // updateTexImage
385 while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
386 mQueueItems.removeAt(0);
387 android_atomic_dec(&mQueuedFrames);
388 }
389
390 mQueueItems.removeAt(0);
391 }
392
393 // Decrement the queued-frames count. Signal another event if we
394 // have more frames pending.
395 if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) || mAutoRefresh) {
396 mFlinger->signalLayerUpdate();
397 }
398
399 // update the active buffer
400 mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer(&mActiveBufferSlot);
401 if (mActiveBuffer == NULL) {
402 // this can only happen if the very first buffer was rejected.
403 return outDirtyRegion;
404 }
405
406 mBufferLatched = true;
407 mPreviousFrameNumber = mCurrentFrameNumber;
408 mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
409
410 {
411 Mutex::Autolock lock(mFrameEventHistoryMutex);
412 mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
413#ifndef USE_HWC2
414 auto releaseFenceTime =
415 std::make_shared<FenceTime>(mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
416 mReleaseTimeline.updateSignalTimes();
417 mReleaseTimeline.push(releaseFenceTime);
418 if (mPreviousFrameNumber != 0) {
419 mFrameEventHistory.addRelease(mPreviousFrameNumber, latchTime,
420 std::move(releaseFenceTime));
421 }
422#endif
423 }
424
425 mRefreshPending = true;
426 mFrameLatencyNeeded = true;
427 if (oldActiveBuffer == NULL) {
428 // the first time we receive a buffer, we need to trigger a
429 // geometry invalidation.
430 recomputeVisibleRegions = true;
431 }
432
433 setDataSpace(mSurfaceFlingerConsumer->getCurrentDataSpace());
434
435 Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
436 const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
437 const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
438 if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
439 (scalingMode != mCurrentScalingMode)) {
440 mCurrentCrop = crop;
441 mCurrentTransform = transform;
442 mCurrentScalingMode = scalingMode;
443 recomputeVisibleRegions = true;
444 }
445
446 if (oldActiveBuffer != NULL) {
447 uint32_t bufWidth = mActiveBuffer->getWidth();
448 uint32_t bufHeight = mActiveBuffer->getHeight();
449 if (bufWidth != uint32_t(oldActiveBuffer->width) ||
450 bufHeight != uint32_t(oldActiveBuffer->height)) {
451 recomputeVisibleRegions = true;
452 }
453 }
454
455 mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
456 if (oldOpacity != isOpaque(s)) {
457 recomputeVisibleRegions = true;
458 }
459
460 // Remove any sync points corresponding to the buffer which was just
461 // latched
462 {
463 Mutex::Autolock lock(mLocalSyncPointMutex);
464 auto point = mLocalSyncPoints.begin();
465 while (point != mLocalSyncPoints.end()) {
466 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
467 // This sync point must have been added since we started
468 // latching. Don't drop it yet.
469 ++point;
470 continue;
471 }
472
473 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
474 point = mLocalSyncPoints.erase(point);
475 } else {
476 ++point;
477 }
478 }
479 }
480
481 // FIXME: postedRegion should be dirty & bounds
482 Region dirtyRegion(Rect(s.active.w, s.active.h));
483
484 // transform the dirty region to window-manager space
485 outDirtyRegion = (getTransform().transform(dirtyRegion));
486
487 return outDirtyRegion;
488}
489
490#ifdef USE_HWC2
491void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
492 // Apply this display's projection's viewport to the visible region
493 // before giving it to the HWC HAL.
494 const Transform& tr = displayDevice->getTransform();
495 const auto& viewport = displayDevice->getViewport();
496 Region visible = tr.transform(visibleRegion.intersect(viewport));
497 auto hwcId = displayDevice->getHwcDisplayId();
498 auto& hwcInfo = mHwcLayers[hwcId];
499 auto& hwcLayer = hwcInfo.layer;
500 auto error = hwcLayer->setVisibleRegion(visible);
501 if (error != HWC2::Error::None) {
502 ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
503 to_string(error).c_str(), static_cast<int32_t>(error));
504 visible.dump(LOG_TAG);
505 }
506
507 error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
508 if (error != HWC2::Error::None) {
509 ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
510 to_string(error).c_str(), static_cast<int32_t>(error));
511 surfaceDamageRegion.dump(LOG_TAG);
512 }
513
514 // Sideband layers
515 if (mSidebandStream.get()) {
516 setCompositionType(hwcId, HWC2::Composition::Sideband);
517 ALOGV("[%s] Requesting Sideband composition", mName.string());
518 error = hwcLayer->setSidebandStream(mSidebandStream->handle());
519 if (error != HWC2::Error::None) {
520 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
521 mSidebandStream->handle(), to_string(error).c_str(), static_cast<int32_t>(error));
522 }
523 return;
524 }
525
526 // Client layers
527 if (hwcInfo.forceClientComposition ||
528 (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) {
529 ALOGV("[%s] Requesting Client composition", mName.string());
530 setCompositionType(hwcId, HWC2::Composition::Client);
531 return;
532 }
533
534 // SolidColor layers
535 if (mActiveBuffer == nullptr) {
536 setCompositionType(hwcId, HWC2::Composition::SolidColor);
537
538 // For now, we only support black for DimLayer
539 error = hwcLayer->setColor({0, 0, 0, 255});
540 if (error != HWC2::Error::None) {
541 ALOGE("[%s] Failed to set color: %s (%d)", mName.string(), to_string(error).c_str(),
542 static_cast<int32_t>(error));
543 }
544
545 // Clear out the transform, because it doesn't make sense absent a
546 // source buffer
547 error = hwcLayer->setTransform(HWC2::Transform::None);
548 if (error != HWC2::Error::None) {
549 ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(),
550 to_string(error).c_str(), static_cast<int32_t>(error));
551 }
552
553 return;
554 }
555
556 // Device or Cursor layers
557 if (mPotentialCursor) {
558 ALOGV("[%s] Requesting Cursor composition", mName.string());
559 setCompositionType(hwcId, HWC2::Composition::Cursor);
560 } else {
561 ALOGV("[%s] Requesting Device composition", mName.string());
562 setCompositionType(hwcId, HWC2::Composition::Device);
563 }
564
565 ALOGV("setPerFrameData: dataspace = %d", mCurrentState.dataSpace);
566 error = hwcLayer->setDataspace(mCurrentState.dataSpace);
567 if (error != HWC2::Error::None) {
568 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentState.dataSpace,
569 to_string(error).c_str(), static_cast<int32_t>(error));
570 }
571
572 uint32_t hwcSlot = 0;
573 sp<GraphicBuffer> hwcBuffer;
574 hwcInfo.bufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer, &hwcSlot, &hwcBuffer);
575
576 auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence();
577 error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
578 if (error != HWC2::Error::None) {
579 ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), mActiveBuffer->handle,
580 to_string(error).c_str(), static_cast<int32_t>(error));
581 }
582}
583
584#else
585void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& hw,
586 HWComposer::HWCLayerInterface& layer) {
587 // we have to set the visible region on every frame because
588 // we currently free it during onLayerDisplayed(), which is called
589 // after HWComposer::commit() -- every frame.
590 // Apply this display's projection's viewport to the visible region
591 // before giving it to the HWC HAL.
592 const Transform& tr = hw->getTransform();
593 Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
594 layer.setVisibleRegionScreen(visible);
595 layer.setSurfaceDamage(surfaceDamageRegion);
596 mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER);
597
598 if (mSidebandStream.get()) {
599 layer.setSidebandStream(mSidebandStream);
600 } else {
601 // NOTE: buffer can be NULL if the client never drew into this
602 // layer yet, or if we ran out of memory
603 layer.setBuffer(mActiveBuffer);
604 }
605}
606#endif
607
608bool BufferLayer::isOpaque(const Layer::State& s) const
609{
610 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
611 // layer's opaque flag.
612 if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
613 return false;
614 }
615
616 // if the layer has the opaque flag, then we're always opaque,
617 // otherwise we use the current buffer's format.
618 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
619}
620
621void BufferLayer::onFirstRef() {
622 // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
623 sp<IGraphicBufferProducer> producer;
624 sp<IGraphicBufferConsumer> consumer;
625 BufferQueue::createBufferQueue(&producer, &consumer, true);
626 mProducer = new MonitoredProducer(producer, mFlinger, this);
627 mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this);
628 mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
629 mSurfaceFlingerConsumer->setContentsChangedListener(this);
630 mSurfaceFlingerConsumer->setName(mName);
631
632 if (mFlinger->isLayerTripleBufferingDisabled()) {
633 mProducer->setMaxDequeuedBufferCount(2);
634 }
635
636 const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
637 updateTransformHint(hw);
638}
639
640// ---------------------------------------------------------------------------
641// Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
642// ---------------------------------------------------------------------------
643
644void BufferLayer::onFrameAvailable(const BufferItem& item) {
645 // Add this buffer from our internal queue tracker
646 { // Autolock scope
647 Mutex::Autolock lock(mQueueItemLock);
648 mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
649 item.mGraphicBuffer->getHeight(),
650 item.mFrameNumber);
651 // Reset the frame number tracker when we receive the first buffer after
652 // a frame number reset
653 if (item.mFrameNumber == 1) {
654 mLastFrameNumberReceived = 0;
655 }
656
657 // Ensure that callbacks are handled in order
658 while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
659 status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500));
660 if (result != NO_ERROR) {
661 ALOGE("[%s] Timed out waiting on callback", mName.string());
662 }
663 }
664
665 mQueueItems.push_back(item);
666 android_atomic_inc(&mQueuedFrames);
667
668 // Wake up any pending callbacks
669 mLastFrameNumberReceived = item.mFrameNumber;
670 mQueueItemCondition.broadcast();
671 }
672
673 mFlinger->signalLayerUpdate();
674}
675
676void BufferLayer::onFrameReplaced(const BufferItem& item) {
677 { // Autolock scope
678 Mutex::Autolock lock(mQueueItemLock);
679
680 // Ensure that callbacks are handled in order
681 while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
682 status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500));
683 if (result != NO_ERROR) {
684 ALOGE("[%s] Timed out waiting on callback", mName.string());
685 }
686 }
687
688 if (mQueueItems.empty()) {
689 ALOGE("Can't replace a frame on an empty queue");
690 return;
691 }
692 mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
693
694 // Wake up any pending callbacks
695 mLastFrameNumberReceived = item.mFrameNumber;
696 mQueueItemCondition.broadcast();
697 }
698}
699
700void BufferLayer::onSidebandStreamChanged() {
701 if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
702 // mSidebandStreamChanged was false
703 mFlinger->signalLayerUpdate();
704 }
705}
706
707bool BufferLayer::needsFiltering(const RenderArea& renderArea) const {
708 return mNeedsFiltering || renderArea.needsFiltering();
709}
710
711// As documented in libhardware header, formats in the range
712// 0x100 - 0x1FF are specific to the HAL implementation, and
713// are known to have no alpha channel
714// TODO: move definition for device-specific range into
715// hardware.h, instead of using hard-coded values here.
716#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
717
718bool BufferLayer::getOpacityForFormat(uint32_t format) {
719 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
720 return true;
721 }
722 switch (format) {
723 case HAL_PIXEL_FORMAT_RGBA_8888:
724 case HAL_PIXEL_FORMAT_BGRA_8888:
725 case HAL_PIXEL_FORMAT_RGBA_FP16:
726 case HAL_PIXEL_FORMAT_RGBA_1010102:
727 return false;
728 }
729 // in all other case, we have no blending (also for unknown formats)
730 return true;
731}
732
733void BufferLayer::drawWithOpenGL(const RenderArea& renderArea,
734 bool useIdentityTransform) const {
735 const State& s(getDrawingState());
736
737 computeGeometry(renderArea, mMesh, useIdentityTransform);
738
739 /*
740 * NOTE: the way we compute the texture coordinates here produces
741 * different results than when we take the HWC path -- in the later case
742 * the "source crop" is rounded to texel boundaries.
743 * This can produce significantly different results when the texture
744 * is scaled by a large amount.
745 *
746 * The GL code below is more logical (imho), and the difference with
747 * HWC is due to a limitation of the HWC API to integers -- a question
748 * is suspend is whether we should ignore this problem or revert to
749 * GL composition when a buffer scaling is applied (maybe with some
750 * minimal value)? Or, we could make GL behave like HWC -- but this feel
751 * like more of a hack.
752 */
753 Rect win(computeBounds());
754
755 Transform t = getTransform();
756 if (!s.finalCrop.isEmpty()) {
757 win = t.transform(win);
758 if (!win.intersect(s.finalCrop, &win)) {
759 win.clear();
760 }
761 win = t.inverse().transform(win);
762 if (!win.intersect(computeBounds(), &win)) {
763 win.clear();
764 }
765 }
766
767 float left = float(win.left) / float(s.active.w);
768 float top = float(win.top) / float(s.active.h);
769 float right = float(win.right) / float(s.active.w);
770 float bottom = float(win.bottom) / float(s.active.h);
771
772 // TODO: we probably want to generate the texture coords with the mesh
773 // here we assume that we only have 4 vertices
774 Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
775 texCoords[0] = vec2(left, 1.0f - top);
776 texCoords[1] = vec2(left, 1.0f - bottom);
777 texCoords[2] = vec2(right, 1.0f - bottom);
778 texCoords[3] = vec2(right, 1.0f - top);
779
780 RenderEngine& engine(mFlinger->getRenderEngine());
781 engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */,
782 getColor());
783#ifdef USE_HWC2
784 engine.setSourceDataSpace(mCurrentState.dataSpace);
785#endif
786 engine.drawMesh(mMesh);
787 engine.disableBlending();
788}
789
790uint32_t BufferLayer::getProducerStickyTransform() const {
791 int producerStickyTransform = 0;
792 int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
793 if (ret != OK) {
794 ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
795 strerror(-ret), ret);
796 return 0;
797 }
798 return static_cast<uint32_t>(producerStickyTransform);
799}
800
801bool BufferLayer::latchUnsignaledBuffers() {
802 static bool propertyLoaded = false;
803 static bool latch = false;
804 static std::mutex mutex;
805 std::lock_guard<std::mutex> lock(mutex);
806 if (!propertyLoaded) {
807 char value[PROPERTY_VALUE_MAX] = {};
808 property_get("debug.sf.latch_unsignaled", value, "0");
809 latch = atoi(value);
810 propertyLoaded = true;
811 }
812 return latch;
813}
814
815uint64_t BufferLayer::getHeadFrameNumber() const {
816 Mutex::Autolock lock(mQueueItemLock);
817 if (!mQueueItems.empty()) {
818 return mQueueItems[0].mFrameNumber;
819 } else {
820 return mCurrentFrameNumber;
821 }
822}
823
824bool BufferLayer::headFenceHasSignaled() const {
825#ifdef USE_HWC2
826 if (latchUnsignaledBuffers()) {
827 return true;
828 }
829
830 Mutex::Autolock lock(mQueueItemLock);
831 if (mQueueItems.empty()) {
832 return true;
833 }
834 if (mQueueItems[0].mIsDroppable) {
835 // Even though this buffer's fence may not have signaled yet, it could
836 // be replaced by another buffer before it has a chance to, which means
837 // that it's possible to get into a situation where a buffer is never
838 // able to be latched. To avoid this, grab this buffer anyway.
839 return true;
840 }
841 return mQueueItems[0].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING;
842#else
843 return true;
844#endif
845}
846
847uint32_t BufferLayer::getEffectiveScalingMode() const {
848 if (mOverrideScalingMode >= 0) {
849 return mOverrideScalingMode;
850 }
851 return mCurrentScalingMode;
852}
853
854// ----------------------------------------------------------------------------
855// transaction
856// ----------------------------------------------------------------------------
857
858void BufferLayer::notifyAvailableFrames() {
859 auto headFrameNumber = getHeadFrameNumber();
860 bool headFenceSignaled = headFenceHasSignaled();
861 Mutex::Autolock lock(mLocalSyncPointMutex);
862 for (auto& point : mLocalSyncPoints) {
863 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
864 point->setFrameAvailable();
865 }
866 }
867}
868
869sp<IGraphicBufferProducer> BufferLayer::getProducer() const {
870 return mProducer;
871}
872
873// ---------------------------------------------------------------------------
874// h/w composer set-up
875// ---------------------------------------------------------------------------
876
877bool BufferLayer::allTransactionsSignaled() {
878 auto headFrameNumber = getHeadFrameNumber();
879 bool matchingFramesFound = false;
880 bool allTransactionsApplied = true;
881 Mutex::Autolock lock(mLocalSyncPointMutex);
882
883 for (auto& point : mLocalSyncPoints) {
884 if (point->getFrameNumber() > headFrameNumber) {
885 break;
886 }
887 matchingFramesFound = true;
888
889 if (!point->frameIsAvailable()) {
890 // We haven't notified the remote layer that the frame for
891 // this point is available yet. Notify it now, and then
892 // abort this attempt to latch.
893 point->setFrameAvailable();
894 allTransactionsApplied = false;
895 break;
896 }
897
898 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
899 }
900 return !matchingFramesFound || allTransactionsApplied;
901}
902
903} // namespace android
904
905#if defined(__gl_h_)
906#error "don't include gl/gl.h in this file"
907#endif
908
909#if defined(__gl2_h_)
910#error "don't include gl2/gl2.h in this file"
911#endif