blob: 1465296bac5279d5e4b038a8fc39646e9d078e94 [file] [log] [blame]
Connor O'Brien57337192018-11-20 12:49:16 -08001/*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "libtimeinstate"
18
19#include "cputimeinstate.h"
Connor O'Briend65f2a02019-08-28 16:15:38 -070020#include <bpf_timeinstate.h>
Connor O'Brien57337192018-11-20 12:49:16 -080021
22#include <dirent.h>
23#include <errno.h>
24#include <inttypes.h>
Connor O'Brienc92ef102019-07-24 15:42:11 -070025#include <sys/sysinfo.h>
Connor O'Brien57337192018-11-20 12:49:16 -080026
27#include <mutex>
Connor O'Brien26de80f2019-06-11 13:49:19 -070028#include <numeric>
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070029#include <optional>
Connor O'Brien57337192018-11-20 12:49:16 -080030#include <set>
31#include <string>
32#include <unordered_map>
33#include <vector>
34
35#include <android-base/file.h>
36#include <android-base/parseint.h>
37#include <android-base/stringprintf.h>
38#include <android-base/strings.h>
39#include <android-base/unique_fd.h>
40#include <bpf/BpfMap.h>
41#include <libbpf.h>
42#include <log/log.h>
43
Connor O'Brien57337192018-11-20 12:49:16 -080044using android::base::StringPrintf;
45using android::base::unique_fd;
46
47namespace android {
48namespace bpf {
49
Connor O'Brien57337192018-11-20 12:49:16 -080050static std::mutex gInitializedMutex;
51static bool gInitialized = false;
Connor O'Brienb0491f82020-01-09 17:10:19 -080052static std::mutex gTrackingMutex;
53static bool gTracking = false;
Connor O'Brien57337192018-11-20 12:49:16 -080054static uint32_t gNPolicies = 0;
Connor O'Brien1a180402019-06-07 16:39:49 -070055static uint32_t gNCpus = 0;
Connor O'Brien57337192018-11-20 12:49:16 -080056static std::vector<std::vector<uint32_t>> gPolicyFreqs;
57static std::vector<std::vector<uint32_t>> gPolicyCpus;
58static std::set<uint32_t> gAllFreqs;
Connor O'Brien26de80f2019-06-11 13:49:19 -070059static unique_fd gTisMapFd;
60static unique_fd gConcurrentMapFd;
Connor O'Brien57337192018-11-20 12:49:16 -080061
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070062static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) {
Connor O'Brien57337192018-11-20 12:49:16 -080063 std::string data;
64
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070065 if (!android::base::ReadFileToString(path, &data)) return {};
Connor O'Brien57337192018-11-20 12:49:16 -080066
67 auto strings = android::base::Split(data, " \n");
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070068 std::vector<uint32_t> ret;
Connor O'Brien57337192018-11-20 12:49:16 -080069 for (const auto &s : strings) {
70 if (s.empty()) continue;
71 uint32_t n;
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070072 if (!android::base::ParseUint(s, &n)) return {};
73 ret.emplace_back(n);
Connor O'Brien57337192018-11-20 12:49:16 -080074 }
Connor O'Brienf03b6ae2019-06-05 18:03:12 -070075 return ret;
Connor O'Brien57337192018-11-20 12:49:16 -080076}
77
78static int isPolicyFile(const struct dirent *d) {
79 return android::base::StartsWith(d->d_name, "policy");
80}
81
82static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) {
83 uint32_t policyN1, policyN2;
84 if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 ||
85 sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1)
86 return 0;
87 return policyN1 - policyN2;
88}
89
Connor O'Brien86df9592020-01-03 18:44:32 -080090static int bpf_obj_get_wronly(const char *pathname) {
91 union bpf_attr attr;
92
93 memset(&attr, 0, sizeof(attr));
94 attr.pathname = ptr_to_u64((void *)pathname);
95 attr.file_flags = BPF_F_WRONLY;
96
97 return syscall(__NR_bpf, BPF_OBJ_GET, &attr, sizeof(attr));
98}
99
Connor O'Brien57337192018-11-20 12:49:16 -0800100static bool initGlobals() {
101 std::lock_guard<std::mutex> guard(gInitializedMutex);
102 if (gInitialized) return true;
103
Connor O'Brien1a180402019-06-07 16:39:49 -0700104 gNCpus = get_nprocs_conf();
105
Connor O'Brien57337192018-11-20 12:49:16 -0800106 struct dirent **dirlist;
107 const char basepath[] = "/sys/devices/system/cpu/cpufreq";
108 int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles);
109 if (ret == -1) return false;
110 gNPolicies = ret;
111
112 std::vector<std::string> policyFileNames;
113 for (uint32_t i = 0; i < gNPolicies; ++i) {
114 policyFileNames.emplace_back(dirlist[i]->d_name);
115 free(dirlist[i]);
116 }
117 free(dirlist);
118
119 for (const auto &policy : policyFileNames) {
120 std::vector<uint32_t> freqs;
121 for (const auto &name : {"available", "boost"}) {
122 std::string path =
123 StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name);
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700124 auto nums = readNumbersFromFile(path);
Connor O'Brienb8fe0772019-09-11 18:09:28 -0700125 if (!nums) continue;
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700126 freqs.insert(freqs.end(), nums->begin(), nums->end());
Connor O'Brien57337192018-11-20 12:49:16 -0800127 }
Connor O'Brienb8fe0772019-09-11 18:09:28 -0700128 if (freqs.empty()) return false;
Connor O'Brien57337192018-11-20 12:49:16 -0800129 std::sort(freqs.begin(), freqs.end());
130 gPolicyFreqs.emplace_back(freqs);
131
132 for (auto freq : freqs) gAllFreqs.insert(freq);
133
Connor O'Brien57337192018-11-20 12:49:16 -0800134 std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus");
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700135 auto cpus = readNumbersFromFile(path);
136 if (!cpus) return false;
137 gPolicyCpus.emplace_back(*cpus);
Connor O'Brien57337192018-11-20 12:49:16 -0800138 }
139
Connor O'Brien26de80f2019-06-11 13:49:19 -0700140 gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")};
141 if (gTisMapFd < 0) return false;
142
143 gConcurrentMapFd =
144 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")};
145 if (gConcurrentMapFd < 0) return false;
Connor O'Brien57337192018-11-20 12:49:16 -0800146
147 gInitialized = true;
148 return true;
149}
150
151static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) {
152 std::string path = StringPrintf(BPF_FS_PATH "prog_time_in_state_tracepoint_%s_%s",
153 eventType.c_str(), eventName.c_str());
154 int prog_fd = bpf_obj_get(path.c_str());
Connor O'Briend250acc2019-01-23 17:21:41 -0800155 if (prog_fd < 0) return false;
156 return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0;
Connor O'Brien57337192018-11-20 12:49:16 -0800157}
158
159// Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes.
160// Returns true on success, false otherwise.
161// Tracking is active only once a live process has successfully called this function; if the calling
162// process dies then it must be called again to resume tracking.
163// This function should *not* be called while tracking is already active; doing so is unnecessary
164// and can lead to accounting errors.
Connor O'Brien26de80f2019-06-11 13:49:19 -0700165bool startTrackingUidTimes() {
Connor O'Brienb0491f82020-01-09 17:10:19 -0800166 std::lock_guard<std::mutex> guard(gTrackingMutex);
Connor O'Brien57b75dc2019-06-06 17:48:20 -0700167 if (!initGlobals()) return false;
Connor O'Brienb0491f82020-01-09 17:10:19 -0800168 if (gTracking) return true;
Connor O'Brien57b75dc2019-06-06 17:48:20 -0700169
Connor O'Brien3fc2cb72019-08-21 12:08:39 -0700170 unique_fd cpuPolicyFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_cpu_policy_map"));
171 if (cpuPolicyFd < 0) return false;
Connor O'Brien57b75dc2019-06-06 17:48:20 -0700172
173 for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) {
174 for (auto &cpu : gPolicyCpus[i]) {
Connor O'Brien3fc2cb72019-08-21 12:08:39 -0700175 if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false;
Connor O'Brien57b75dc2019-06-06 17:48:20 -0700176 }
177 }
178
Connor O'Brien3fc2cb72019-08-21 12:08:39 -0700179 unique_fd freqToIdxFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_freq_to_idx_map"));
180 if (freqToIdxFd < 0) return false;
Connor O'Brien1a180402019-06-07 16:39:49 -0700181 freq_idx_key_t key;
182 for (uint32_t i = 0; i < gNPolicies; ++i) {
183 key.policy = i;
184 for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) {
185 key.freq = gPolicyFreqs[i][j];
186 // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq.
187 // The uid_times map still uses 0-based indexes, and the sched_switch program handles
188 // conversion between them, so this does not affect our map reading code.
189 uint32_t idx = j + 1;
Connor O'Brien3fc2cb72019-08-21 12:08:39 -0700190 if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false;
Connor O'Brien1a180402019-06-07 16:39:49 -0700191 }
192 }
193
Connor O'Brien3fc2cb72019-08-21 12:08:39 -0700194 unique_fd cpuLastUpdateFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_cpu_last_update_map"));
195 if (cpuLastUpdateFd < 0) return false;
196 std::vector<uint64_t> zeros(get_nprocs_conf(), 0);
197 uint32_t zero = 0;
198 if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false;
199
200 unique_fd nrActiveFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_nr_active_map"));
201 if (nrActiveFd < 0) return false;
202 if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false;
203
204 unique_fd policyNrActiveFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_policy_nr_active_map"));
205 if (policyNrActiveFd < 0) return false;
206 for (uint32_t i = 0; i < gNPolicies; ++i) {
207 if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false;
208 }
209
210 unique_fd policyFreqIdxFd(bpf_obj_get_wronly(BPF_FS_PATH "map_time_in_state_policy_freq_idx_map"));
211 if (policyFreqIdxFd < 0) return false;
212 for (uint32_t i = 0; i < gNPolicies; ++i) {
213 if (writeToMapEntry(policyFreqIdxFd, &i, &zero, BPF_ANY)) return false;
214 }
215
Connor O'Brienb0491f82020-01-09 17:10:19 -0800216 gTracking = attachTracepointProgram("sched", "sched_switch") &&
Connor O'Brien57337192018-11-20 12:49:16 -0800217 attachTracepointProgram("power", "cpu_frequency");
Connor O'Brienb0491f82020-01-09 17:10:19 -0800218 return gTracking;
Connor O'Brien57337192018-11-20 12:49:16 -0800219}
220
Connor O'Brien8f296eb2019-10-01 17:58:38 -0700221std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() {
222 if (!gInitialized && !initGlobals()) return {};
223 return gPolicyFreqs;
224}
225
Connor O'Brien26de80f2019-06-11 13:49:19 -0700226// Retrieve the times in ns that uid spent running at each CPU frequency.
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700227// Return contains no value on error, otherwise it contains a vector of vectors using the format:
Connor O'Brien57337192018-11-20 12:49:16 -0800228// [[t0_0, t0_1, ...],
229// [t1_0, t1_1, ...], ...]
230// where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq.
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700231std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) {
232 if (!gInitialized && !initGlobals()) return {};
Connor O'Brien57337192018-11-20 12:49:16 -0800233
Connor O'Brien1a180402019-06-07 16:39:49 -0700234 std::vector<std::vector<uint64_t>> out;
235 uint32_t maxFreqCount = 0;
236 for (const auto &freqList : gPolicyFreqs) {
237 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
238 out.emplace_back(freqList.size(), 0);
239 }
Connor O'Brien57337192018-11-20 12:49:16 -0800240
Connor O'Brien26de80f2019-06-11 13:49:19 -0700241 std::vector<tis_val_t> vals(gNCpus);
Connor O'Brien1a180402019-06-07 16:39:49 -0700242 time_key_t key = {.uid = uid};
243 for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) {
244 key.bucket = i;
Connor O'Brien26de80f2019-06-11 13:49:19 -0700245 if (findMapEntry(gTisMapFd, &key, vals.data())) {
Connor O'Brien1a180402019-06-07 16:39:49 -0700246 if (errno != ENOENT) return {};
247 continue;
Connor O'Brien57337192018-11-20 12:49:16 -0800248 }
Connor O'Brien1a180402019-06-07 16:39:49 -0700249
250 auto offset = i * FREQS_PER_ENTRY;
251 auto nextOffset = (i + 1) * FREQS_PER_ENTRY;
252 for (uint32_t j = 0; j < gNPolicies; ++j) {
253 if (offset >= gPolicyFreqs[j].size()) continue;
254 auto begin = out[j].begin() + offset;
255 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end();
256
257 for (const auto &cpu : gPolicyCpus[j]) {
258 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
Connor O'Brienc92ef102019-07-24 15:42:11 -0700259 }
Connor O'Brien57337192018-11-20 12:49:16 -0800260 }
261 }
262
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700263 return out;
Connor O'Brien57337192018-11-20 12:49:16 -0800264}
265
Connor O'Brien26de80f2019-06-11 13:49:19 -0700266// Retrieve the times in ns that each uid spent running at each CPU freq.
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700267// Return contains no value on error, otherwise it contains a map from uids to vectors of vectors
268// using the format:
Connor O'Brien57337192018-11-20 12:49:16 -0800269// { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
270// uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
271// where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq.
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700272std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
273getUidsCpuFreqTimes() {
274 if (!gInitialized && !initGlobals()) return {};
Connor O'Brien1a180402019-06-07 16:39:49 -0700275 time_key_t key, prevKey;
Connor O'Brienf03b6ae2019-06-05 18:03:12 -0700276 std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map;
Connor O'Brien26de80f2019-06-11 13:49:19 -0700277 if (getFirstMapKey(gTisMapFd, &key)) {
Connor O'Brien1a180402019-06-07 16:39:49 -0700278 if (errno == ENOENT) return map;
279 return std::nullopt;
280 }
281
282 std::vector<std::vector<uint64_t>> mapFormat;
283 for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0);
284
Connor O'Brien26de80f2019-06-11 13:49:19 -0700285 std::vector<tis_val_t> vals(gNCpus);
Connor O'Brien1a180402019-06-07 16:39:49 -0700286 do {
Connor O'Brien26de80f2019-06-11 13:49:19 -0700287 if (findMapEntry(gTisMapFd, &key, vals.data())) return {};
Connor O'Brien1a180402019-06-07 16:39:49 -0700288 if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat);
289
290 auto offset = key.bucket * FREQS_PER_ENTRY;
291 auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY;
292 for (uint32_t i = 0; i < gNPolicies; ++i) {
293 if (offset >= gPolicyFreqs[i].size()) continue;
294 auto begin = map[key.uid][i].begin() + offset;
295 auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY :
296 map[key.uid][i].end();
297 for (const auto &cpu : gPolicyCpus[i]) {
298 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
Connor O'Brien57337192018-11-20 12:49:16 -0800299 }
Connor O'Brien57337192018-11-20 12:49:16 -0800300 }
Connor O'Brien1a180402019-06-07 16:39:49 -0700301 prevKey = key;
Connor O'Brien26de80f2019-06-11 13:49:19 -0700302 } while (!getNextMapKey(gTisMapFd, &prevKey, &key));
Connor O'Brien1a180402019-06-07 16:39:49 -0700303 if (errno != ENOENT) return {};
304 return map;
Connor O'Brien57337192018-11-20 12:49:16 -0800305}
306
Connor O'Brien26de80f2019-06-11 13:49:19 -0700307static bool verifyConcurrentTimes(const concurrent_time_t &ct) {
308 uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0);
309 uint64_t policySum = 0;
310 for (const auto &vec : ct.policy) {
311 policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0);
312 }
313 return activeSum == policySum;
314}
315
316// Retrieve the times in ns that uid spent running concurrently with each possible number of other
317// tasks on each cluster (policy times) and overall (active times).
318// Return contains no value on error, otherwise it contains a concurrent_time_t with the format:
319// {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]}
320// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
321// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster
322std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) {
323 if (!gInitialized && !initGlobals()) return {};
324 concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)};
325 for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0);
326 std::vector<concurrent_val_t> vals(gNCpus);
327 time_key_t key = {.uid = uid};
328 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
329 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) {
330 if (errno != ENOENT) return {};
331 continue;
332 }
333 auto offset = key.bucket * CPUS_PER_ENTRY;
334 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
335
336 auto activeBegin = ret.active.begin() + offset;
337 auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end();
338
339 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
340 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
341 std::plus<uint64_t>());
342 }
343
344 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
345 if (offset >= gPolicyCpus[policy].size()) continue;
346 auto policyBegin = ret.policy[policy].begin() + offset;
347 auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
348 : ret.policy[policy].end();
349
350 for (const auto &cpu : gPolicyCpus[policy]) {
351 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
352 std::plus<uint64_t>());
353 }
354 }
355 }
356 if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false);
357 return ret;
358}
359
360// Retrieve the times in ns that each uid spent running concurrently with each possible number of
361// other tasks on each cluster (policy times) and overall (active times).
362// Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's
363// using the format:
364// { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...}
365// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
366// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster.
367std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() {
368 if (!gInitialized && !initGlobals()) return {};
369 time_key_t key, prevKey;
370 std::unordered_map<uint32_t, concurrent_time_t> ret;
371 if (getFirstMapKey(gConcurrentMapFd, &key)) {
372 if (errno == ENOENT) return ret;
373 return {};
374 }
375
376 concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)};
377 for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0);
378
379 std::vector<concurrent_val_t> vals(gNCpus);
380 std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd;
381
382 do {
383 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {};
384 if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat);
385
386 auto offset = key.bucket * CPUS_PER_ENTRY;
387 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
388
389 activeBegin = ret[key.uid].active.begin();
390 activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end();
391
392 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
393 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
394 std::plus<uint64_t>());
395 }
396
397 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
398 if (offset >= gPolicyCpus[policy].size()) continue;
399 policyBegin = ret[key.uid].policy[policy].begin() + offset;
400 policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
401 : ret[key.uid].policy[policy].end();
402
403 for (const auto &cpu : gPolicyCpus[policy]) {
404 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
405 std::plus<uint64_t>());
406 }
407 }
408 prevKey = key;
409 } while (!getNextMapKey(gConcurrentMapFd, &prevKey, &key));
410 if (errno != ENOENT) return {};
411 for (const auto &[key, value] : ret) {
412 if (!verifyConcurrentTimes(value)) {
413 auto val = getUidConcurrentTimes(key, false);
414 if (val.has_value()) ret[key] = val.value();
415 }
416 }
417 return ret;
418}
419
Connor O'Brien57337192018-11-20 12:49:16 -0800420// Clear all time in state data for a given uid. Returns false on error, true otherwise.
Connor O'Brien26de80f2019-06-11 13:49:19 -0700421// This is only suitable for clearing data when an app is uninstalled; if called on a UID with
422// running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that
423// UID.
424bool clearUidTimes(uint32_t uid) {
Connor O'Brien57337192018-11-20 12:49:16 -0800425 if (!gInitialized && !initGlobals()) return false;
Connor O'Brien57337192018-11-20 12:49:16 -0800426
Connor O'Brien1a180402019-06-07 16:39:49 -0700427 time_key_t key = {.uid = uid};
428
429 uint32_t maxFreqCount = 0;
430 for (const auto &freqList : gPolicyFreqs) {
431 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
432 }
433
Connor O'Brien26de80f2019-06-11 13:49:19 -0700434 tis_val_t zeros = {0};
435 std::vector<tis_val_t> vals(gNCpus, zeros);
Connor O'Brien1a180402019-06-07 16:39:49 -0700436 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
Connor O'Brien26de80f2019-06-11 13:49:19 -0700437 if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT)
438 return false;
439 if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false;
440 }
441
442 concurrent_val_t czeros = {.policy = {0}, .active = {0}};
443 std::vector<concurrent_val_t> cvals(gNCpus, czeros);
444 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
445 if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT)
446 return false;
447 if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false;
Connor O'Brien57337192018-11-20 12:49:16 -0800448 }
449 return true;
450}
451
452} // namespace bpf
453} // namespace android