auto import from //depot/cupcake/@135843
diff --git a/opengl/libagl/primitives.cpp b/opengl/libagl/primitives.cpp
new file mode 100644
index 0000000..f164c02
--- /dev/null
+++ b/opengl/libagl/primitives.cpp
@@ -0,0 +1,1111 @@
+/* libs/opengles/primitives.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License"); 
+** you may not use this file except in compliance with the License. 
+** You may obtain a copy of the License at 
+**
+**     http://www.apache.org/licenses/LICENSE-2.0 
+**
+** Unless required by applicable law or agreed to in writing, software 
+** distributed under the License is distributed on an "AS IS" BASIS, 
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
+** See the License for the specific language governing permissions and 
+** limitations under the License.
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "context.h"
+#include "primitives.h"
+#include "light.h"
+#include "matrix.h"
+#include "vertex.h"
+#include "fp.h"
+#include "TextureObjectManager.h"
+
+extern "C" void iterators0032(const void* that,
+        int32_t* it, int32_t c0, int32_t c1, int32_t c2);
+
+namespace android {
+
+// ----------------------------------------------------------------------------
+
+static void primitive_point(ogles_context_t* c, vertex_t* v);
+static void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
+static void primitive_clip_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void primitive_nop_point(ogles_context_t* c, vertex_t* v);
+static void primitive_nop_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
+static void primitive_nop_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static inline bool cull_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_texcoords(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_texcoords_w(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void clip_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static unsigned int clip_line(ogles_context_t* c,
+        vertex_t* s, vertex_t* p);
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#endif
+
+static void lightTriangleDarkSmooth(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    if (!(v0->flags & vertex_t::LIT)) {
+        v0->flags |= vertex_t::LIT;
+        const GLvoid* cp = c->arrays.color.element(
+                v0->index & vertex_cache_t::INDEX_MASK);
+        c->arrays.color.fetch(c, v0->color.v, cp);
+    }
+    if (!(v1->flags & vertex_t::LIT)) {
+        v1->flags |= vertex_t::LIT;
+        const GLvoid* cp = c->arrays.color.element(
+                v1->index & vertex_cache_t::INDEX_MASK);
+        c->arrays.color.fetch(c, v1->color.v, cp);
+    }
+    if(!(v2->flags & vertex_t::LIT)) {
+        v2->flags |= vertex_t::LIT;
+        const GLvoid* cp = c->arrays.color.element(
+                v2->index & vertex_cache_t::INDEX_MASK);
+        c->arrays.color.fetch(c, v2->color.v, cp);
+    }
+}
+
+static void lightTriangleDarkFlat(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    if (!(v2->flags & vertex_t::LIT)) {
+        v2->flags |= vertex_t::LIT;
+        const GLvoid* cp = c->arrays.color.element(
+                v2->index & vertex_cache_t::INDEX_MASK);
+        c->arrays.color.fetch(c, v2->color.v, cp);
+    }
+    // configure the rasterizer here, before we clip
+    c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+static void lightTriangleSmooth(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    if (!(v0->flags & vertex_t::LIT))
+        c->lighting.lightVertex(c, v0);
+    if (!(v1->flags & vertex_t::LIT))
+        c->lighting.lightVertex(c, v1);
+    if(!(v2->flags & vertex_t::LIT))
+        c->lighting.lightVertex(c, v2);
+}
+
+static void lightTriangleFlat(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    if (!(v2->flags & vertex_t::LIT))
+        c->lighting.lightVertex(c, v2);
+    // configure the rasterizer here, before we clip
+    c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+// The fog versions...
+
+static inline
+void lightVertexDarkSmoothFog(ogles_context_t* c, vertex_t* v)
+{
+    if (!(v->flags & vertex_t::LIT)) {
+        v->flags |= vertex_t::LIT;
+        v->fog = c->fog.fog(c, v->eye.z);
+        const GLvoid* cp = c->arrays.color.element(
+                v->index & vertex_cache_t::INDEX_MASK);
+        c->arrays.color.fetch(c, v->color.v, cp);
+    }
+}
+static inline
+void lightVertexDarkFlatFog(ogles_context_t* c, vertex_t* v)
+{
+    if (!(v->flags & vertex_t::LIT)) {
+        v->flags |= vertex_t::LIT;
+        v->fog = c->fog.fog(c, v->eye.z);
+    }
+}
+static inline
+void lightVertexSmoothFog(ogles_context_t* c, vertex_t* v)
+{
+    if (!(v->flags & vertex_t::LIT)) {
+        v->fog = c->fog.fog(c, v->eye.z);
+        c->lighting.lightVertex(c, v);
+    }
+}
+
+static void lightTriangleDarkSmoothFog(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    lightVertexDarkSmoothFog(c, v0);
+    lightVertexDarkSmoothFog(c, v1);
+    lightVertexDarkSmoothFog(c, v2);
+}
+
+static void lightTriangleDarkFlatFog(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    lightVertexDarkFlatFog(c, v0);
+    lightVertexDarkFlatFog(c, v1);
+    lightVertexDarkSmoothFog(c, v2);
+    // configure the rasterizer here, before we clip
+    c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+static void lightTriangleSmoothFog(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    lightVertexSmoothFog(c, v0);
+    lightVertexSmoothFog(c, v1);
+    lightVertexSmoothFog(c, v2);
+}
+
+static void lightTriangleFlatFog(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    lightVertexDarkFlatFog(c, v0);
+    lightVertexDarkFlatFog(c, v1);
+    lightVertexSmoothFog(c, v2);
+    // configure the rasterizer here, before we clip
+    c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+
+
+typedef void (*light_primitive_t)(ogles_context_t*,
+        vertex_t*, vertex_t*, vertex_t*);
+
+// fog 0x4, light 0x2, smooth 0x1
+static const light_primitive_t lightPrimitive[8] = {
+    lightTriangleDarkFlat,          // no fog | dark  | flat
+    lightTriangleDarkSmooth,        // no fog | dark  | smooth
+    lightTriangleFlat,              // no fog | light | flat
+    lightTriangleSmooth,            // no fog | light | smooth
+    lightTriangleDarkFlatFog,       // fog    | dark  | flat
+    lightTriangleDarkSmoothFog,     // fog    | dark  | smooth
+    lightTriangleFlatFog,           // fog    | light | flat
+    lightTriangleSmoothFog          // fog    | light | smooth
+};
+
+void ogles_validate_primitives(ogles_context_t* c)
+{
+    const uint32_t enables = c->rasterizer.state.enables;
+
+    // set up the lighting/shading/smoothing/fogging function
+    int index = enables & GGL_ENABLE_SMOOTH ? 0x1 : 0;
+    index |= c->lighting.enable ? 0x2 : 0;
+    index |= enables & GGL_ENABLE_FOG ? 0x4 : 0;
+    c->lighting.lightTriangle = lightPrimitive[index];
+    
+    // set up the primitive renderers
+    if (ggl_likely(c->arrays.vertex.enable)) {
+        c->prims.renderPoint    = primitive_point;
+        c->prims.renderLine     = primitive_line;
+        c->prims.renderTriangle = primitive_clip_triangle;
+    } else {
+        c->prims.renderPoint    = primitive_nop_point;
+        c->prims.renderLine     = primitive_nop_line;
+        c->prims.renderTriangle = primitive_nop_triangle;
+    }
+}
+
+// ----------------------------------------------------------------------------
+
+void compute_iterators_t::initTriangle(
+        vertex_t const* v0, vertex_t const* v1, vertex_t const* v2)
+{
+    m_dx01 = v1->window.x - v0->window.x;
+    m_dy10 = v0->window.y - v1->window.y;
+    m_dx20 = v0->window.x - v2->window.x;
+    m_dy02 = v2->window.y - v0->window.y;
+    m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
+}
+
+void compute_iterators_t::initLine(
+        vertex_t const* v0, vertex_t const* v1)
+{
+    m_dx01 = m_dy02 = v1->window.x - v0->window.x;
+    m_dy10 = m_dx20 = v0->window.y - v1->window.y;
+    m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
+}
+
+void compute_iterators_t::initLerp(vertex_t const* v0, uint32_t enables)
+{
+    m_x0 = v0->window.x;
+    m_y0 = v0->window.y;
+    const GGLcoord area = (m_area + TRI_HALF) >> TRI_FRACTION_BITS;
+    const GGLcoord minArea = 2; // cannot be inverted
+    // triangles with an area smaller than 1.0 are not smooth-shaded
+
+    int q=0, s=0, d=0;
+    if (abs(area) >= minArea) {
+        // Here we do some voodoo magic, to compute a suitable scale
+        // factor for deltas/area:
+
+        // First compute the 1/area with full 32-bits precision,
+        // gglRecipQNormalized returns a number [-0.5, 0.5[ and an exponent.
+        d = gglRecipQNormalized(area, &q);
+
+        // Then compute the minimum left-shift to not overflow the muls
+        // below. 
+        s = 32 - gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
+
+        // We'll keep 16-bits of precision for deltas/area. So we need
+        // to shift everything left an extra 15 bits.
+        s += 15;
+        
+        // make sure all final shifts are not > 32, because gglMulx
+        // can't handle it.
+        if (s < q) s = q;
+        if (s > 32) {
+            d >>= 32-s;
+            s = 32;
+        }
+    }
+
+    m_dx01 = gglMulx(m_dx01, d, s);
+    m_dy10 = gglMulx(m_dy10, d, s);
+    m_dx20 = gglMulx(m_dx20, d, s);
+    m_dy02 = gglMulx(m_dy02, d, s);
+    m_area_scale = 32 + q - s;
+    m_scale = 0;
+
+    if (enables & GGL_ENABLE_TMUS) {
+        const int A = gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
+        const int B = gglClz(abs(m_x0)|abs(m_y0));
+        m_scale = max(0, 32 - (A + 16)) +
+                  max(0, 32 - (B + TRI_FRACTION_BITS)) + 1;
+    }
+}
+
+int compute_iterators_t::iteratorsScale(GGLfixed* it,
+        int32_t c0, int32_t c1, int32_t c2) const
+{
+    int32_t dc01 = c1 - c0;
+    int32_t dc02 = c2 - c0;
+    const int A = gglClz(abs(c0));
+    const int B = gglClz(abs(dc01)|abs(dc02));
+    const int scale = min(A, B - m_scale) - 2;
+    if (scale >= 0) {
+        c0   <<= scale;
+        dc01 <<= scale;
+        dc02 <<= scale;
+    } else {
+        c0   >>= -scale;
+        dc01 >>= -scale;
+        dc02 >>= -scale;
+    }
+    const int s = m_area_scale;
+    int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
+    int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
+    int32_t c = c0 - (gglMulAddx(dcdx, m_x0, 
+            gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
+    it[0] = c;
+    it[1] = dcdx;
+    it[2] = dcdy;
+    return scale;
+}
+
+void compute_iterators_t::iterators1616(GGLfixed* it,
+        GGLfixed c0, GGLfixed c1, GGLfixed c2) const
+{
+    const GGLfixed dc01 = c1 - c0;
+    const GGLfixed dc02 = c2 - c0;
+    // 16.16 x 16.16 == 32.32 --> 16.16
+    const int s = m_area_scale;
+    int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
+    int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
+    int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
+            gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
+    it[0] = c;
+    it[1] = dcdx;
+    it[2] = dcdy;
+}
+
+void compute_iterators_t::iterators0032(int64_t* it,
+        int32_t c0, int32_t c1, int32_t c2) const
+{
+    const int s = m_area_scale - 16;
+    int32_t dc01 = (c1 - c0)>>s;
+    int32_t dc02 = (c2 - c0)>>s;
+    // 16.16 x 16.16 == 32.32
+    int64_t dcdx = gglMulii(dc01, m_dy02) + gglMulii(dc02, m_dy10);
+    int64_t dcdy = gglMulii(dc02, m_dx01) + gglMulii(dc01, m_dx20);
+    it[ 0] = (c0<<16) - ((dcdx*m_x0 + dcdy*m_y0)>>4);
+    it[ 1] = dcdx;
+    it[ 2] = dcdy;
+}
+
+#if defined(__arm__) && !defined(__thumb__)
+inline void compute_iterators_t::iterators0032(int32_t* it,
+        int32_t c0, int32_t c1, int32_t c2) const
+{
+    ::iterators0032(this, it, c0, c1, c2);
+}
+#else
+void compute_iterators_t::iterators0032(int32_t* it,
+        int32_t c0, int32_t c1, int32_t c2) const
+{
+    int64_t it64[3];
+    iterators0032(it, c0, c1, c2);
+    it[0] = it64[0];
+    it[1] = it64[1];
+    it[2] = it64[2];
+}
+#endif
+
+// ----------------------------------------------------------------------------
+
+static inline int32_t clampZ(GLfixed z) CONST;
+int32_t clampZ(GLfixed z) {
+    z = (z & ~(z>>31));
+    if (z >= 0x10000)
+        z = 0xFFFF;
+    return z;
+}
+
+static __attribute__((noinline))
+void fetch_texcoord_impl(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    vertex_t* const vtx[3] = { v0, v1, v2 };
+    array_t const * const texcoordArray = c->arrays.texture;
+    
+    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+        if (!(c->rasterizer.state.texture[i].enable))
+            continue;
+        
+        for (int j=0 ; j<3 ; j++) {
+            vertex_t* const v = vtx[j];
+            if (v->flags & vertex_t::TT)
+                continue;
+
+            // NOTE: here we could compute automatic texgen
+            // such as sphere/cube maps, instead of fetching them
+            // from the textcoord array.
+
+            vec4_t& coords = v->texture[i];
+            const GLubyte* tp = texcoordArray[i].element(
+                    v->index & vertex_cache_t::INDEX_MASK);
+            texcoordArray[i].fetch(c, coords.v, tp);
+
+            // transform texture coordinates...
+            coords.Q = 0x10000;
+            const transform_t& tr = c->transforms.texture[i].transform; 
+            if (ggl_unlikely(tr.ops)) {
+                c->arrays.tex_transform[i](&tr, &coords, &coords);
+            }
+
+            // divide by Q
+            const GGLfixed q = coords.Q;
+            if (ggl_unlikely(q != 0x10000)) {
+                const int32_t qinv = gglRecip28(q);
+                coords.S = gglMulx(coords.S, qinv, 28);
+                coords.T = gglMulx(coords.T, qinv, 28);
+            }
+        }
+    }
+    v0->flags |= vertex_t::TT;
+    v1->flags |= vertex_t::TT;
+    v2->flags |= vertex_t::TT;
+}
+
+inline void fetch_texcoord(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    const uint32_t enables = c->rasterizer.state.enables;
+    if (!(enables & GGL_ENABLE_TMUS))
+        return;
+
+    // Fetch & transform texture coordinates...
+    if (ggl_likely(v0->flags & v1->flags & v2->flags & vertex_t::TT)) {
+        // already done for all three vertices, bail...
+        return;
+    }
+    fetch_texcoord_impl(c, v0, v1, v2);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Point
+#endif
+
+void primitive_nop_point(ogles_context_t*, vertex_t*) {
+}
+
+void primitive_point(ogles_context_t* c, vertex_t* v)
+{
+    // lighting & clamping...
+    const uint32_t enables = c->rasterizer.state.enables;
+
+    if (ggl_unlikely(!(v->flags & vertex_t::LIT))) {
+        if (c->lighting.enable) {
+            c->lighting.lightVertex(c, v);
+        } else {
+            v->flags |= vertex_t::LIT;
+            const GLvoid* cp = c->arrays.color.element(
+                    v->index & vertex_cache_t::INDEX_MASK);
+            c->arrays.color.fetch(c, v->color.v, cp);
+        }
+        if (enables & GGL_ENABLE_FOG) {
+            v->fog = c->fog.fog(c, v->eye.z);
+        }
+    }
+
+    // XXX: we don't need to do that each-time
+    // if color array and lighting not enabled 
+    c->rasterizer.procs.color4xv(c, v->color.v);
+
+    // XXX: look into ES point-sprite extension
+    if (enables & GGL_ENABLE_TMUS) {
+        fetch_texcoord(c, v,v,v);
+        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+            if (!c->rasterizer.state.texture[i].enable) 
+                continue;
+            int32_t itt[8];
+            itt[1] = itt[2] = itt[4] = itt[5] = 0;
+            itt[6] = itt[7] = 16; // XXX: check that
+            if (c->rasterizer.state.texture[i].s_wrap == GGL_CLAMP) {
+                int width = c->textures.tmu[i].texture->surface.width;
+                itt[0] = v->texture[i].S * width;
+                itt[6] = 0;
+            }
+            if (c->rasterizer.state.texture[i].t_wrap == GGL_CLAMP) {
+                int height = c->textures.tmu[i].texture->surface.height;
+                itt[3] = v->texture[i].T * height;
+                itt[7] = 0;
+            }
+            c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+        }
+    }
+    
+    if (enables & GGL_ENABLE_DEPTH_TEST) {
+        int32_t itz[3];
+        itz[0] = clampZ(v->window.z) * 0x00010001;
+        itz[1] = itz[2] = 0;
+        c->rasterizer.procs.zGrad3xv(c, itz);
+    }
+
+    if (enables & GGL_ENABLE_FOG) {
+        GLfixed itf[3];
+        itf[0] = v->fog;
+        itf[1] = itf[2] = 0;
+        c->rasterizer.procs.fogGrad3xv(c, itf);
+    }
+
+    // Render our point...
+    c->rasterizer.procs.pointx(c, v->window.v, c->point.size);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Line
+#endif
+
+void primitive_nop_line(ogles_context_t*, vertex_t*, vertex_t*) {
+}
+
+void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1)
+{
+    // get texture coordinates
+    fetch_texcoord(c, v0, v1, v1);
+
+    // light/shade the vertices first (they're copied below)
+    c->lighting.lightTriangle(c, v0, v1, v1);
+
+    // clip the line if needed
+    if (ggl_unlikely((v0->flags | v1->flags) & vertex_t::CLIP_ALL)) {
+        unsigned int count = clip_line(c, v0, v1);
+        if (ggl_unlikely(count == 0))
+            return;
+    }
+
+    // compute iterators...
+    const uint32_t enables = c->rasterizer.state.enables;
+    const uint32_t mask =   GGL_ENABLE_TMUS |
+                            GGL_ENABLE_SMOOTH |
+                            GGL_ENABLE_W | 
+                            GGL_ENABLE_FOG |
+                            GGL_ENABLE_DEPTH_TEST;
+
+    if (ggl_unlikely(enables & mask)) {
+        c->lerp.initLine(v0, v1);
+        lerp_triangle(c, v0, v1, v0);
+    }
+
+    // render our line
+    c->rasterizer.procs.linex(c, v0->window.v, v1->window.v, c->line.width);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Triangle
+#endif
+
+void primitive_nop_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2) {
+}
+
+void primitive_clip_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    uint32_t cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
+    if (ggl_likely(!cc)) {
+        // code below must be as optimized as possible, this is the
+        // common code path.
+
+        // This triangle is not clipped, test if it's culled
+        // unclipped triangle...
+        c->lerp.initTriangle(v0, v1, v2);
+        if (cull_triangle(c, v0, v1, v2))
+            return; // culled!
+
+        // Fetch all texture coordinates if needed
+        fetch_texcoord(c, v0, v1, v2);
+
+        // light (or shade) our triangle!
+        c->lighting.lightTriangle(c, v0, v1, v2);
+
+        triangle(c, v0, v1, v2);
+        return;
+    }
+
+    // The assumption here is that we're not going to clip very often,
+    // and even more rarely will we clip a triangle that ends up
+    // being culled out. So it's okay to light the vertices here, even though
+    // in a few cases we won't render the triangle (if culled).
+
+    // Fetch texture coordinates...
+    fetch_texcoord(c, v0, v1, v2);
+
+    // light (or shade) our triangle!
+    c->lighting.lightTriangle(c, v0, v1, v2);
+
+    clip_triangle(c, v0, v1, v2);
+}
+
+// -----------------------------------------------------------------------
+
+void triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    // compute iterators...
+    const uint32_t enables = c->rasterizer.state.enables;
+    const uint32_t mask =   GGL_ENABLE_TMUS |
+                            GGL_ENABLE_SMOOTH |
+                            GGL_ENABLE_W | 
+                            GGL_ENABLE_FOG |
+                            GGL_ENABLE_DEPTH_TEST;
+
+    if (ggl_likely(enables & mask))
+        lerp_triangle(c, v0, v1, v2);
+
+    c->rasterizer.procs.trianglex(c, v0->window.v, v1->window.v, v2->window.v);
+}
+
+void lerp_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    const uint32_t enables = c->rasterizer.state.enables;
+    c->lerp.initLerp(v0, enables);
+
+    // set up texture iterators
+    if (enables & GGL_ENABLE_TMUS) {
+        if (enables & GGL_ENABLE_W) {
+            lerp_texcoords_w(c, v0, v1, v2);
+        } else {
+            lerp_texcoords(c, v0, v1, v2);
+        }
+    }
+
+    // set up the color iterators
+    const compute_iterators_t& lerp = c->lerp;
+    if (enables & GGL_ENABLE_SMOOTH) {
+        GLfixed itc[12];
+        for (int i=0 ; i<4 ; i++) {
+            const GGLcolor c0 = v0->color.v[i] * 255;
+            const GGLcolor c1 = v1->color.v[i] * 255;
+            const GGLcolor c2 = v2->color.v[i] * 255;
+            lerp.iterators1616(&itc[i*3], c0, c1, c2);
+        }
+        c->rasterizer.procs.colorGrad12xv(c, itc);
+    }
+
+    if (enables & GGL_ENABLE_DEPTH_TEST) {
+        int32_t itz[3];
+        const int32_t v0z = clampZ(v0->window.z);
+        const int32_t v1z = clampZ(v1->window.z);
+        const int32_t v2z = clampZ(v2->window.z);
+        if (ggl_unlikely(c->polygonOffset.enable)) {
+            const int32_t units = (c->polygonOffset.units << 16);
+            const GLfixed factor = c->polygonOffset.factor;
+            if (factor) {
+                int64_t itz64[3];
+                lerp.iterators0032(itz64, v0z, v1z, v2z);
+                int64_t maxDepthSlope = max(itz64[1], itz64[2]);
+                itz[0] = uint32_t(itz64[0]) 
+                        + uint32_t((maxDepthSlope*factor)>>16) + units;
+                itz[1] = uint32_t(itz64[1]);
+                itz[2] = uint32_t(itz64[2]);
+            } else {
+                lerp.iterators0032(itz, v0z, v1z, v2z);
+                itz[0] += units; 
+            }
+        } else {
+            lerp.iterators0032(itz, v0z, v1z, v2z);
+        }
+        c->rasterizer.procs.zGrad3xv(c, itz);
+    }    
+
+    if (ggl_unlikely(enables & GGL_ENABLE_FOG)) {
+        GLfixed itf[3];
+        lerp.iterators1616(itf, v0->fog, v1->fog, v2->fog);
+        c->rasterizer.procs.fogGrad3xv(c, itf);
+    }
+}
+
+
+static inline
+int compute_lod(ogles_context_t* c, int i,
+        int32_t s0, int32_t t0, int32_t s1, int32_t t1, int32_t s2, int32_t t2)
+{
+    // Compute mipmap level / primitive
+    // rho = sqrt( texelArea / area )
+    // lod = log2( rho )
+    // lod = log2( texelArea / area ) / 2
+    // lod = (log2( texelArea ) - log2( area )) / 2
+    const compute_iterators_t& lerp = c->lerp;
+    const GGLcoord area = abs(lerp.area());
+    const int w = c->textures.tmu[i].texture->surface.width;
+    const int h = c->textures.tmu[i].texture->surface.height;
+    const int shift = 16 + (16 - TRI_FRACTION_BITS);
+    int32_t texelArea = abs( gglMulx(s1-s0, t2-t0, shift) -
+            gglMulx(s2-s0, t1-t0, shift) )*w*h;
+    int log2TArea = (32-TRI_FRACTION_BITS  -1) - gglClz(texelArea);
+    int log2Area  = (32-TRI_FRACTION_BITS*2-1) - gglClz(area);
+    int lod = (log2TArea - log2Area + 1) >> 1;
+    return lod;
+}
+
+void lerp_texcoords(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    const compute_iterators_t& lerp = c->lerp;
+    int32_t itt[8] __attribute__((aligned(16)));
+    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+        const texture_t& tmu = c->rasterizer.state.texture[i];
+        if (!tmu.enable) 
+            continue;
+
+        // compute the jacobians using block floating-point
+        int32_t s0 = v0->texture[i].S;
+        int32_t t0 = v0->texture[i].T;
+        int32_t s1 = v1->texture[i].S;
+        int32_t t1 = v1->texture[i].T;
+        int32_t s2 = v2->texture[i].S;
+        int32_t t2 = v2->texture[i].T;
+
+        const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
+        if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
+            int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
+            c->rasterizer.procs.bindTextureLod(c, i,
+                    &c->textures.tmu[i].texture->mip(lod));
+        }
+
+        // premultiply (s,t) when clampling
+        if (tmu.s_wrap == GGL_CLAMP) {
+            const int width = tmu.surface.width;
+            s0 *= width;
+            s1 *= width;
+            s2 *= width;
+        }
+        if (tmu.t_wrap == GGL_CLAMP) {
+            const int height = tmu.surface.height;
+            t0 *= height;
+            t1 *= height;
+            t2 *= height;
+        }
+        itt[6] = -lerp.iteratorsScale(itt+0, s0, s1, s2);
+        itt[7] = -lerp.iteratorsScale(itt+3, t0, t1, t2);
+        c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+    }
+}
+
+void lerp_texcoords_w(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    const compute_iterators_t& lerp = c->lerp;
+    int32_t itt[8] __attribute__((aligned(16)));
+    int32_t itw[3];
+
+    // compute W's scale to 2.30
+    int32_t w0 = v0->window.w;
+    int32_t w1 = v1->window.w;
+    int32_t w2 = v2->window.w;
+    int wscale = 32 - gglClz(w0|w1|w2);
+
+    // compute the jacobian using block floating-point    
+    int sc = lerp.iteratorsScale(itw, w0, w1, w2);
+    sc +=  wscale - 16;
+    c->rasterizer.procs.wGrad3xv(c, itw);
+
+    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+        const texture_t& tmu = c->rasterizer.state.texture[i];
+        if (!tmu.enable) 
+            continue;
+
+        // compute the jacobians using block floating-point
+        int32_t s0 = v0->texture[i].S;
+        int32_t t0 = v0->texture[i].T;
+        int32_t s1 = v1->texture[i].S;
+        int32_t t1 = v1->texture[i].T;
+        int32_t s2 = v2->texture[i].S;
+        int32_t t2 = v2->texture[i].T;
+
+        const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
+        if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
+            int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
+            c->rasterizer.procs.bindTextureLod(c, i,
+                    &c->textures.tmu[i].texture->mip(lod));
+        }
+
+        // premultiply (s,t) when clampling
+        if (tmu.s_wrap == GGL_CLAMP) {
+            const int width = tmu.surface.width;
+            s0 *= width;
+            s1 *= width;
+            s2 *= width;
+        }
+        if (tmu.t_wrap == GGL_CLAMP) {
+            const int height = tmu.surface.height;
+            t0 *= height;
+            t1 *= height;
+            t2 *= height;
+        }
+
+        s0 = gglMulx(s0, w0, wscale);
+        t0 = gglMulx(t0, w0, wscale);
+        s1 = gglMulx(s1, w1, wscale);
+        t1 = gglMulx(t1, w1, wscale);
+        s2 = gglMulx(s2, w2, wscale);
+        t2 = gglMulx(t2, w2, wscale);
+
+        itt[6] = sc - lerp.iteratorsScale(itt+0, s0, s1, s2);
+        itt[7] = sc - lerp.iteratorsScale(itt+3, t0, t1, t2);
+        c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+    }
+}
+
+
+static inline
+bool cull_triangle(ogles_context_t* c, vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    if (ggl_likely(c->cull.enable)) {
+        const GLenum winding = (c->lerp.area() > 0) ? GL_CW : GL_CCW;
+        const GLenum face = (winding == c->cull.frontFace) ? GL_FRONT : GL_BACK;
+        if (face == c->cull.cullFace)
+            return true; // culled!
+    }
+    return false;
+}
+
+static inline
+GLfixed frustumPlaneDist(int plane, const vec4_t& s)
+{
+    const GLfixed d = s.v[ plane >> 1 ];
+    return  ((plane & 1) ? (s.w - d) : (s.w + d)); 
+}
+
+static inline
+int32_t clipDivide(GLfixed a, GLfixed b) {
+    // returns a 4.28 fixed-point
+    return gglMulDivi(1LU<<28, a, b);
+} 
+
+void clip_triangle(ogles_context_t* c,
+        vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+    uint32_t all_cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
+
+    vertex_t *p0, *p1, *p2;
+    const int MAX_CLIPPING_PLANES = 6 + OGLES_MAX_CLIP_PLANES;
+    const int MAX_VERTICES = 3;
+
+    // Temporary buffer to hold the new vertices. Each plane can add up to 
+    // two new vertices (because the polygon is convex).
+    // We need one extra element, to handle an overflow case when
+    // the polygon degenerates into something non convex.
+    vertex_t buffer[MAX_CLIPPING_PLANES * 2 + 1];   // ~3KB
+    vertex_t* buf = buffer;
+
+    // original list of vertices (polygon to clip, in fact this
+    // function works with an arbitrary polygon).
+    vertex_t* in[3] = { v0, v1, v2 };
+    
+    // output lists (we need 2, which we use back and forth)
+    // (maximum outpout list's size is MAX_CLIPPING_PLANES + MAX_VERTICES)
+    // 2 more elements for overflow when non convex polygons.
+    vertex_t* out[2][MAX_CLIPPING_PLANES + MAX_VERTICES + 2];
+    unsigned int outi = 0;
+    
+    // current input list
+    vertex_t** ivl = in;
+
+    // 3 input vertices, 0 in the output list, first plane
+    unsigned int ic = 3;
+
+    // User clip-planes first, the clipping is always done in eye-coordinate
+    // this is basically the same algorithm than for the view-volume
+    // clipping, except for the computation of the distance (vertex, plane)
+    // and the fact that we need to compute the eye-coordinates of each
+    // new vertex we create.
+    
+    if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
+    {
+        unsigned int plane = 0;
+        uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
+        do {
+            if (cc & 1) {        
+                // pointers to our output list (head and current)
+                vertex_t** const ovl = &out[outi][0];
+                vertex_t** output = ovl;
+                unsigned int oc = 0;
+                unsigned int sentinel = 0;
+                // previous vertex, compute distance to the plane
+                vertex_t* s = ivl[ic-1];
+                const vec4_t& equation = c->clipPlanes.plane[plane].equation;
+                GLfixed sd = dot4(equation.v, s->eye.v);
+                // clip each vertex against this plane...
+                for (unsigned int i=0 ; i<ic ; i++) {            
+                    vertex_t* p = ivl[i];
+                    const GLfixed pd = dot4(equation.v, p->eye.v);
+                    if (sd >= 0) {
+                        if (pd >= 0) {
+                            // both inside
+                            *output++ = p;
+                            oc++;
+                        } else {
+                            // s inside, p outside (exiting)
+                            const GLfixed t = clipDivide(sd, sd-pd);
+                            c->arrays.clipEye(c, buf, t, p, s);
+                            *output++ = buf++;
+                            oc++;
+                            if (++sentinel >= 3)
+                                return; // non-convex polygon!
+                        }
+                    } else {
+                        if (pd >= 0) {
+                            // s outside (entering)
+                            if (pd) {
+                                const GLfixed t = clipDivide(pd, pd-sd);
+                                c->arrays.clipEye(c, buf, t, s, p);
+                                *output++ = buf++;
+                                oc++;
+                                if (++sentinel >= 3)
+                                    return; // non-convex polygon!
+                            }
+                            *output++ = p;
+                            oc++;
+                        } else {
+                           // both outside
+                        }
+                    }
+                    s = p;
+                    sd = pd;
+                }
+                // output list become the new input list
+                if (oc<3)
+                    return; // less than 3 vertices left? we're done!
+                ivl = ovl;
+                ic = oc;
+                outi = 1-outi;
+            }
+            cc >>= 1;
+            plane++;
+        } while (cc);
+    }
+
+    // frustum clip-planes
+    if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
+    {
+        unsigned int plane = 0;
+        uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
+        do {
+            if (cc & 1) {        
+                // pointers to our output list (head and current)
+                vertex_t** const ovl = &out[outi][0];
+                vertex_t** output = ovl;
+                unsigned int oc = 0;
+                unsigned int sentinel = 0;
+                // previous vertex, compute distance to the plane
+                vertex_t* s = ivl[ic-1];
+                GLfixed sd = frustumPlaneDist(plane, s->clip);
+                // clip each vertex against this plane...
+                for (unsigned int i=0 ; i<ic ; i++) {            
+                    vertex_t* p = ivl[i];
+                    const GLfixed pd = frustumPlaneDist(plane, p->clip);
+                    if (sd >= 0) {
+                        if (pd >= 0) {
+                            // both inside
+                            *output++ = p;
+                            oc++;
+                        } else {
+                            // s inside, p outside (exiting)
+                            const GLfixed t = clipDivide(sd, sd-pd);
+                            c->arrays.clipVertex(c, buf, t, p, s);
+                            *output++ = buf++;
+                            oc++;
+                            if (++sentinel >= 3)
+                                return; // non-convex polygon!
+                        }
+                    } else {
+                        if (pd >= 0) {
+                            // s outside (entering)
+                            if (pd) {
+                                const GLfixed t = clipDivide(pd, pd-sd);
+                                c->arrays.clipVertex(c, buf, t, s, p);
+                                *output++ = buf++;
+                                oc++;
+                                if (++sentinel >= 3)
+                                    return; // non-convex polygon!
+                            }
+                            *output++ = p;
+                            oc++;
+                        } else {
+                           // both outside
+                        }
+                    }
+                    s = p;
+                    sd = pd;
+                }
+                // output list become the new input list
+                if (oc<3)
+                    return; // less than 3 vertices left? we're done!
+                ivl = ovl;
+                ic = oc;
+                outi = 1-outi;
+            }
+            cc >>= 1;
+            plane++;
+        } while (cc);
+    }
+    
+    // finally we can render our triangles...
+    p0 = ivl[0];
+    p1 = ivl[1];
+    for (unsigned int i=2 ; i<ic ; i++) {
+        p2 = ivl[i];
+        c->lerp.initTriangle(p0, p1, p2);
+        if (cull_triangle(c, p0, p1, p2)) {
+            p1 = p2;
+            continue; // culled!
+        }
+        triangle(c, p0, p1, p2);
+        p1 = p2;
+    }
+}
+
+unsigned int clip_line(ogles_context_t* c, vertex_t* s, vertex_t* p)
+{
+    const uint32_t all_cc = (s->flags | p->flags) & vertex_t::CLIP_ALL;
+
+    if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
+    {
+        unsigned int plane = 0;
+        uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
+        do {
+            if (cc & 1) {
+                const vec4_t& equation = c->clipPlanes.plane[plane].equation;
+                const GLfixed sd = dot4(equation.v, s->eye.v);
+                const GLfixed pd = dot4(equation.v, p->eye.v);
+                if (sd >= 0) {
+                    if (pd >= 0) {
+                        // both inside
+                    } else {
+                        // s inside, p outside (exiting)
+                        const GLfixed t = clipDivide(sd, sd-pd);
+                        c->arrays.clipEye(c, p, t, p, s);
+                    }
+                } else {
+                    if (pd >= 0) {
+                        // s outside (entering)
+                        if (pd) {
+                            const GLfixed t = clipDivide(pd, pd-sd);
+                            c->arrays.clipEye(c, s, t, s, p);
+                        }
+                    } else {
+                       // both outside
+                       return 0;
+                    }
+                }
+            }
+            cc >>= 1;
+            plane++;
+        } while (cc);
+    }
+
+    // frustum clip-planes
+    if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
+    {
+        unsigned int plane = 0;
+        uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
+        do {
+            if (cc & 1) {
+                const GLfixed sd = frustumPlaneDist(plane, s->clip);
+                const GLfixed pd = frustumPlaneDist(plane, p->clip);
+                if (sd >= 0) {
+                    if (pd >= 0) {
+                        // both inside
+                    } else {
+                        // s inside, p outside (exiting)
+                        const GLfixed t = clipDivide(sd, sd-pd);
+                        c->arrays.clipVertex(c, p, t, p, s);
+                    }
+                } else {
+                    if (pd >= 0) {
+                        // s outside (entering)
+                        if (pd) {
+                            const GLfixed t = clipDivide(pd, pd-sd);
+                            c->arrays.clipVertex(c, s, t, s, p);
+                        }
+                    } else {
+                       // both outside
+                       return 0;
+                    }
+                }
+            }
+            cc >>= 1;
+            plane++;
+        } while (cc);
+    }
+
+    return 2;
+}
+
+
+}; // namespace android