FTL: Configure clang-format

Bug: 160012986
Test: ftl_test
Change-Id: Iab01c967b9318afecb21107a6c25bebc4178edcd
diff --git a/include/ftl/.clang-format b/include/ftl/.clang-format
new file mode 120000
index 0000000..86b1593
--- /dev/null
+++ b/include/ftl/.clang-format
@@ -0,0 +1 @@
+../../../../build/soong/scripts/system-clang-format-2
\ No newline at end of file
diff --git a/include/ftl/array_traits.h b/include/ftl/array_traits.h
index 011034f..1265fa1 100644
--- a/include/ftl/array_traits.h
+++ b/include/ftl/array_traits.h
@@ -27,109 +27,109 @@
 
 template <typename T>
 struct ArrayTraits {
-    using value_type = T;
-    using size_type = std::size_t;
-    using difference_type = std::ptrdiff_t;
+  using value_type = T;
+  using size_type = std::size_t;
+  using difference_type = std::ptrdiff_t;
 
-    using pointer = value_type*;
-    using reference = value_type&;
-    using iterator = pointer;
-    using reverse_iterator = std::reverse_iterator<iterator>;
+  using pointer = value_type*;
+  using reference = value_type&;
+  using iterator = pointer;
+  using reverse_iterator = std::reverse_iterator<iterator>;
 
-    using const_pointer = const value_type*;
-    using const_reference = const value_type&;
-    using const_iterator = const_pointer;
-    using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+  using const_pointer = const value_type*;
+  using const_reference = const value_type&;
+  using const_iterator = const_pointer;
+  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 
-    template <typename... Args>
-    static pointer construct_at(const_iterator it, Args&&... args) {
-        void* const ptr = const_cast<void*>(static_cast<const void*>(it));
-        if constexpr (std::is_constructible_v<value_type, Args...>) {
-            // TODO: Replace with std::construct_at in C++20.
-            return new (ptr) value_type(std::forward<Args>(args)...);
-        } else {
-            // Fall back to list initialization.
-            return new (ptr) value_type{std::forward<Args>(args)...};
-        }
+  template <typename... Args>
+  static pointer construct_at(const_iterator it, Args&&... args) {
+    void* const ptr = const_cast<void*>(static_cast<const void*>(it));
+    if constexpr (std::is_constructible_v<value_type, Args...>) {
+      // TODO: Replace with std::construct_at in C++20.
+      return new (ptr) value_type(std::forward<Args>(args)...);
+    } else {
+      // Fall back to list initialization.
+      return new (ptr) value_type{std::forward<Args>(args)...};
     }
+  }
 };
 
 // CRTP mixin to define iterator functions in terms of non-const Self::begin and Self::end.
 template <typename Self, typename T>
 class ArrayIterators {
-    FTL_ARRAY_TRAIT(T, size_type);
+  FTL_ARRAY_TRAIT(T, size_type);
 
-    FTL_ARRAY_TRAIT(T, reference);
-    FTL_ARRAY_TRAIT(T, iterator);
-    FTL_ARRAY_TRAIT(T, reverse_iterator);
+  FTL_ARRAY_TRAIT(T, reference);
+  FTL_ARRAY_TRAIT(T, iterator);
+  FTL_ARRAY_TRAIT(T, reverse_iterator);
 
-    FTL_ARRAY_TRAIT(T, const_reference);
-    FTL_ARRAY_TRAIT(T, const_iterator);
-    FTL_ARRAY_TRAIT(T, const_reverse_iterator);
+  FTL_ARRAY_TRAIT(T, const_reference);
+  FTL_ARRAY_TRAIT(T, const_iterator);
+  FTL_ARRAY_TRAIT(T, const_reverse_iterator);
 
-    Self& self() const { return *const_cast<Self*>(static_cast<const Self*>(this)); }
+  Self& self() const { return *const_cast<Self*>(static_cast<const Self*>(this)); }
 
-public:
-    const_iterator begin() const { return cbegin(); }
-    const_iterator cbegin() const { return self().begin(); }
+ public:
+  const_iterator begin() const { return cbegin(); }
+  const_iterator cbegin() const { return self().begin(); }
 
-    const_iterator end() const { return cend(); }
-    const_iterator cend() const { return self().end(); }
+  const_iterator end() const { return cend(); }
+  const_iterator cend() const { return self().end(); }
 
-    reverse_iterator rbegin() { return std::make_reverse_iterator(self().end()); }
-    const_reverse_iterator rbegin() const { return crbegin(); }
-    const_reverse_iterator crbegin() const { return self().rbegin(); }
+  reverse_iterator rbegin() { return std::make_reverse_iterator(self().end()); }
+  const_reverse_iterator rbegin() const { return crbegin(); }
+  const_reverse_iterator crbegin() const { return self().rbegin(); }
 
-    reverse_iterator rend() { return std::make_reverse_iterator(self().begin()); }
-    const_reverse_iterator rend() const { return crend(); }
-    const_reverse_iterator crend() const { return self().rend(); }
+  reverse_iterator rend() { return std::make_reverse_iterator(self().begin()); }
+  const_reverse_iterator rend() const { return crend(); }
+  const_reverse_iterator crend() const { return self().rend(); }
 
-    iterator last() { return self().end() - 1; }
-    const_iterator last() const { return self().last(); }
+  iterator last() { return self().end() - 1; }
+  const_iterator last() const { return self().last(); }
 
-    reference front() { return *self().begin(); }
-    const_reference front() const { return self().front(); }
+  reference front() { return *self().begin(); }
+  const_reference front() const { return self().front(); }
 
-    reference back() { return *last(); }
-    const_reference back() const { return self().back(); }
+  reference back() { return *last(); }
+  const_reference back() const { return self().back(); }
 
-    reference operator[](size_type i) { return *(self().begin() + i); }
-    const_reference operator[](size_type i) const { return self()[i]; }
+  reference operator[](size_type i) { return *(self().begin() + i); }
+  const_reference operator[](size_type i) const { return self()[i]; }
 };
 
 // Mixin to define comparison operators for an array-like template.
 // TODO: Replace with operator<=> in C++20.
 template <template <typename, std::size_t> class Array>
 struct ArrayComparators {
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator==(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator==(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
+  }
 
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator<(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator<(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
+  }
 
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator>(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return rhs < lhs;
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator>(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return rhs < lhs;
+  }
 
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator!=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return !(lhs == rhs);
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator!=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return !(lhs == rhs);
+  }
 
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator>=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return !(lhs < rhs);
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator>=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return !(lhs < rhs);
+  }
 
-    template <typename T, std::size_t N, std::size_t M>
-    friend bool operator<=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
-        return !(lhs > rhs);
-    }
+  template <typename T, std::size_t N, std::size_t M>
+  friend bool operator<=(const Array<T, N>& lhs, const Array<T, M>& rhs) {
+    return !(lhs > rhs);
+  }
 };
 
-} // namespace android::ftl
+}  // namespace android::ftl
diff --git a/include/ftl/initializer_list.h b/include/ftl/initializer_list.h
index 62f63b7..769c09f 100644
--- a/include/ftl/initializer_list.h
+++ b/include/ftl/initializer_list.h
@@ -32,15 +32,15 @@
 // in a tuple with each successive call. For instance, the following calls initialize three
 // strings using different constructors, i.e. string literal, default, and count/character:
 //
-//     ... = ftl::init::list<std::string>("abc")()(3u, '?');
+//   ... = ftl::init::list<std::string>("abc")()(3u, '?');
 //
 // The following syntax is a shorthand for key-value pairs, where the first argument is the
 // key, and the rest construct the value. The types of the key and value are deduced if the
 // first pair contains exactly two arguments:
 //
-//     ... = ftl::init::map<int, std::string>(-1, "abc")(-2)(-3, 3u, '?');
+//   ... = ftl::init::map<int, std::string>(-1, "abc")(-2)(-3, 3u, '?');
 //
-//     ... = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
+//   ... = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
 //
 // WARNING: The InitializerList returned by an ftl::init::list expression must be consumed
 // immediately, since temporary arguments are destroyed after the full expression. Storing
@@ -51,19 +51,18 @@
 
 template <typename T, std::size_t... Sizes, typename... Types>
 struct InitializerList<T, std::index_sequence<Sizes...>, Types...> {
-    // Creates a superset InitializerList by appending the number of arguments to Sizes, and
-    // expanding Types with forwarding references for each argument.
-    template <typename... Args>
-    [[nodiscard]] constexpr auto operator()(Args&&... args) && -> InitializerList<
-            T, std::index_sequence<Sizes..., sizeof...(Args)>, Types..., Args&&...> {
-        return {std::tuple_cat(std::move(tuple),
-                               std::forward_as_tuple(std::forward<Args>(args)...))};
-    }
+  // Creates a superset InitializerList by appending the number of arguments to Sizes, and
+  // expanding Types with forwarding references for each argument.
+  template <typename... Args>
+  [[nodiscard]] constexpr auto operator()(Args&&... args) && -> InitializerList<
+      T, std::index_sequence<Sizes..., sizeof...(Args)>, Types..., Args&&...> {
+    return {std::tuple_cat(std::move(tuple), std::forward_as_tuple(std::forward<Args>(args)...))};
+  }
 
-    // The temporary InitializerList returned by operator() is bound to an rvalue reference in
-    // container constructors, which extends the lifetime of any temporary arguments that this
-    // tuple refers to until the completion of the full expression containing the construction.
-    std::tuple<Types...> tuple;
+  // The temporary InitializerList returned by operator() is bound to an rvalue reference in
+  // container constructors, which extends the lifetime of any temporary arguments that this
+  // tuple refers to until the completion of the full expression containing the construction.
+  std::tuple<Types...> tuple;
 };
 
 template <typename K, typename V>
@@ -74,37 +73,36 @@
 // with the latter.
 template <typename K, typename V, std::size_t... Sizes, typename... Types>
 struct InitializerList<KeyValue<K, V>, std::index_sequence<Sizes...>, Types...> {
-    // Accumulate the three arguments to std::pair's piecewise constructor.
-    template <typename... Args>
-    [[nodiscard]] constexpr auto operator()(K&& k, Args&&... args) && -> InitializerList<
-            KeyValue<K, V>, std::index_sequence<Sizes..., 3>, Types..., std::piecewise_construct_t,
-            std::tuple<K&&>, std::tuple<Args&&...>> {
-        return {std::tuple_cat(std::move(tuple),
-                               std::forward_as_tuple(std::piecewise_construct,
-                                                     std::forward_as_tuple(std::forward<K>(k)),
-                                                     std::forward_as_tuple(
-                                                             std::forward<Args>(args)...)))};
-    }
+  // Accumulate the three arguments to std::pair's piecewise constructor.
+  template <typename... Args>
+  [[nodiscard]] constexpr auto operator()(K&& k, Args&&... args) && -> InitializerList<
+      KeyValue<K, V>, std::index_sequence<Sizes..., 3>, Types..., std::piecewise_construct_t,
+      std::tuple<K&&>, std::tuple<Args&&...>> {
+    return {std::tuple_cat(
+        std::move(tuple),
+        std::forward_as_tuple(std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)),
+                              std::forward_as_tuple(std::forward<Args>(args)...)))};
+  }
 
-    std::tuple<Types...> tuple;
+  std::tuple<Types...> tuple;
 };
 
 namespace init {
 
 template <typename T, typename... Args>
 [[nodiscard]] constexpr auto list(Args&&... args) {
-    return InitializerList<T>{}(std::forward<Args>(args)...);
+  return InitializerList<T>{}(std::forward<Args>(args)...);
 }
 
 template <typename K, typename V, typename... Args>
 [[nodiscard]] constexpr auto map(Args&&... args) {
-    return list<KeyValue<K, V>>(std::forward<Args>(args)...);
+  return list<KeyValue<K, V>>(std::forward<Args>(args)...);
 }
 
 template <typename K, typename V>
 [[nodiscard]] constexpr auto map(K&& k, V&& v) {
-    return list<KeyValue<K, V>>(std::forward<K>(k), std::forward<V>(v));
+  return list<KeyValue<K, V>>(std::forward<K>(k), std::forward<V>(v));
 }
 
-} // namespace init
-} // namespace android::ftl
+}  // namespace init
+}  // namespace android::ftl
diff --git a/include/ftl/small_map.h b/include/ftl/small_map.h
index d058369..84c15eb 100644
--- a/include/ftl/small_map.h
+++ b/include/ftl/small_map.h
@@ -34,172 +34,170 @@
 //
 // Example usage:
 //
-//    ftl::SmallMap<int, std::string, 3> map;
-//    assert(map.empty());
-//    assert(!map.dynamic());
+//   ftl::SmallMap<int, std::string, 3> map;
+//   assert(map.empty());
+//   assert(!map.dynamic());
 //
-//    map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
-//    assert(map.size() == 3u);
-//    assert(!map.dynamic());
+//   map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
+//   assert(map.size() == 3u);
+//   assert(!map.dynamic());
 //
-//    assert(map.contains(123));
-//    assert(map.find(42, [](const std::string& s) { return s.size(); }) == 3u);
+//   assert(map.contains(123));
+//   assert(map.find(42, [](const std::string& s) { return s.size(); }) == 3u);
 //
-//    const auto opt = map.find(-1);
-//    assert(opt);
+//   const auto opt = map.find(-1);
+//   assert(opt);
 //
-//    std::string& ref = *opt;
-//    assert(ref.empty());
-//    ref = "xyz";
+//   std::string& ref = *opt;
+//   assert(ref.empty());
+//   ref = "xyz";
 //
-//    assert(map == SmallMap(ftl::init::map(-1, "xyz")(42, "???")(123, "abc")));
+//   assert(map == SmallMap(ftl::init::map(-1, "xyz")(42, "???")(123, "abc")));
 //
 template <typename K, typename V, std::size_t N>
 class SmallMap final {
-    using Map = SmallVector<std::pair<const K, V>, N>;
+  using Map = SmallVector<std::pair<const K, V>, N>;
 
-public:
-    using key_type = K;
-    using mapped_type = V;
+ public:
+  using key_type = K;
+  using mapped_type = V;
 
-    using value_type = typename Map::value_type;
-    using size_type = typename Map::size_type;
-    using difference_type = typename Map::difference_type;
+  using value_type = typename Map::value_type;
+  using size_type = typename Map::size_type;
+  using difference_type = typename Map::difference_type;
 
-    using reference = typename Map::reference;
-    using iterator = typename Map::iterator;
+  using reference = typename Map::reference;
+  using iterator = typename Map::iterator;
 
-    using const_reference = typename Map::const_reference;
-    using const_iterator = typename Map::const_iterator;
+  using const_reference = typename Map::const_reference;
+  using const_iterator = typename Map::const_iterator;
 
-    // Creates an empty map.
-    SmallMap() = default;
+  // Creates an empty map.
+  SmallMap() = default;
 
-    // Constructs at most N key-value pairs in place by forwarding per-pair constructor arguments.
-    // The template arguments K, V, and N are inferred using the deduction guide defined below.
-    // The syntax for listing pairs is as follows:
-    //
-    //     ftl::SmallMap map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
-    //
-    //     static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, std::string, 3>>);
-    //     assert(map.size() == 3u);
-    //     assert(map.contains(-1) && map.find(-1)->get().empty());
-    //     assert(map.contains(42) && map.find(42)->get() == "???");
-    //     assert(map.contains(123) && map.find(123)->get() == "abc");
-    //
-    // The types of the key and value are deduced if the first pair contains exactly two arguments:
-    //
-    //     ftl::SmallMap map = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
-    //     static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, char, 3>>);
-    //
-    template <typename U, std::size_t... Sizes, typename... Types>
-    SmallMap(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
-          : map_(std::move(list)) {
-        // TODO: Enforce unique keys.
-    }
+  // Constructs at most N key-value pairs in place by forwarding per-pair constructor arguments.
+  // The template arguments K, V, and N are inferred using the deduction guide defined below.
+  // The syntax for listing pairs is as follows:
+  //
+  //   ftl::SmallMap map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
+  //
+  //   static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, std::string, 3>>);
+  //   assert(map.size() == 3u);
+  //   assert(map.contains(-1) && map.find(-1)->get().empty());
+  //   assert(map.contains(42) && map.find(42)->get() == "???");
+  //   assert(map.contains(123) && map.find(123)->get() == "abc");
+  //
+  // The types of the key and value are deduced if the first pair contains exactly two arguments:
+  //
+  //   ftl::SmallMap map = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
+  //   static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, char, 3>>);
+  //
+  template <typename U, std::size_t... Sizes, typename... Types>
+  SmallMap(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
+      : map_(std::move(list)) {
+    // TODO: Enforce unique keys.
+  }
 
-    size_type max_size() const { return map_.max_size(); }
-    size_type size() const { return map_.size(); }
-    bool empty() const { return map_.empty(); }
+  size_type max_size() const { return map_.max_size(); }
+  size_type size() const { return map_.size(); }
+  bool empty() const { return map_.empty(); }
 
-    // Returns whether the map is backed by static or dynamic storage.
-    bool dynamic() const { return map_.dynamic(); }
+  // Returns whether the map is backed by static or dynamic storage.
+  bool dynamic() const { return map_.dynamic(); }
 
-    iterator begin() { return map_.begin(); }
-    const_iterator begin() const { return cbegin(); }
-    const_iterator cbegin() const { return map_.cbegin(); }
+  iterator begin() { return map_.begin(); }
+  const_iterator begin() const { return cbegin(); }
+  const_iterator cbegin() const { return map_.cbegin(); }
 
-    iterator end() { return map_.end(); }
-    const_iterator end() const { return cend(); }
-    const_iterator cend() const { return map_.cend(); }
+  iterator end() { return map_.end(); }
+  const_iterator end() const { return cend(); }
+  const_iterator cend() const { return map_.cend(); }
 
-    // Returns whether a mapping exists for the given key.
-    bool contains(const key_type& key) const {
-        return find(key, [](const mapped_type&) {});
-    }
+  // Returns whether a mapping exists for the given key.
+  bool contains(const key_type& key) const {
+    return find(key, [](const mapped_type&) {});
+  }
 
-    // Returns a reference to the value for the given key, or std::nullopt if the key was not found.
-    //
-    //     ftl::SmallMap map = ftl::init::map('a', 'A')('b', 'B')('c', 'C');
-    //
-    //     const auto opt = map.find('c');
-    //     assert(opt == 'C');
-    //
-    //     char d = 'd';
-    //     const auto ref = map.find('d').value_or(std::ref(d));
-    //     ref.get() = 'D';
-    //     assert(d == 'D');
-    //
-    auto find(const key_type& key) const
-            -> std::optional<std::reference_wrapper<const mapped_type>> {
-        return find(key, [](const mapped_type& v) { return std::cref(v); });
-    }
+  // Returns a reference to the value for the given key, or std::nullopt if the key was not found.
+  //
+  //   ftl::SmallMap map = ftl::init::map('a', 'A')('b', 'B')('c', 'C');
+  //
+  //   const auto opt = map.find('c');
+  //   assert(opt == 'C');
+  //
+  //   char d = 'd';
+  //   const auto ref = map.find('d').value_or(std::ref(d));
+  //   ref.get() = 'D';
+  //   assert(d == 'D');
+  //
+  auto find(const key_type& key) const -> std::optional<std::reference_wrapper<const mapped_type>> {
+    return find(key, [](const mapped_type& v) { return std::cref(v); });
+  }
 
-    auto find(const key_type& key) -> std::optional<std::reference_wrapper<mapped_type>> {
-        return find(key, [](mapped_type& v) { return std::ref(v); });
-    }
+  auto find(const key_type& key) -> std::optional<std::reference_wrapper<mapped_type>> {
+    return find(key, [](mapped_type& v) { return std::ref(v); });
+  }
 
-    // Returns the result R of a unary operation F on (a constant or mutable reference to) the value
-    // for the given key, or std::nullopt if the key was not found. If F has a return type of void,
-    // then the Boolean result indicates whether the key was found.
-    //
-    //     ftl::SmallMap map = ftl::init::map('a', 'x')('b', 'y')('c', 'z');
-    //
-    //     assert(map.find('c', [](char c) { return std::toupper(c); }) == 'Z');
-    //     assert(map.find('c', [](char& c) { c = std::toupper(c); }));
-    //
-    template <typename F, typename R = std::invoke_result_t<F, const mapped_type&>>
-    auto find(const key_type& key, F f) const
-            -> std::conditional_t<std::is_void_v<R>, bool, std::optional<R>> {
-        for (auto& [k, v] : *this) {
-            if (k == key) {
-                if constexpr (std::is_void_v<R>) {
-                    f(v);
-                    return true;
-                } else {
-                    return f(v);
-                }
-            }
+  // Returns the result R of a unary operation F on (a constant or mutable reference to) the value
+  // for the given key, or std::nullopt if the key was not found. If F has a return type of void,
+  // then the Boolean result indicates whether the key was found.
+  //
+  //   ftl::SmallMap map = ftl::init::map('a', 'x')('b', 'y')('c', 'z');
+  //
+  //   assert(map.find('c', [](char c) { return std::toupper(c); }) == 'Z');
+  //   assert(map.find('c', [](char& c) { c = std::toupper(c); }));
+  //
+  template <typename F, typename R = std::invoke_result_t<F, const mapped_type&>>
+  auto find(const key_type& key, F f) const
+      -> std::conditional_t<std::is_void_v<R>, bool, std::optional<R>> {
+    for (auto& [k, v] : *this) {
+      if (k == key) {
+        if constexpr (std::is_void_v<R>) {
+          f(v);
+          return true;
+        } else {
+          return f(v);
         }
-
-        return {};
+      }
     }
 
-    template <typename F>
-    auto find(const key_type& key, F f) {
-        return std::as_const(*this).find(key, [&f](const mapped_type& v) {
-            return f(const_cast<mapped_type&>(v));
-        });
-    }
+    return {};
+  }
 
-private:
-    Map map_;
+  template <typename F>
+  auto find(const key_type& key, F f) {
+    return std::as_const(*this).find(
+        key, [&f](const mapped_type& v) { return f(const_cast<mapped_type&>(v)); });
+  }
+
+ private:
+  Map map_;
 };
 
 // Deduction guide for in-place constructor.
 template <typename K, typename V, std::size_t... Sizes, typename... Types>
 SmallMap(InitializerList<KeyValue<K, V>, std::index_sequence<Sizes...>, Types...>&&)
-        -> SmallMap<K, V, sizeof...(Sizes)>;
+    -> SmallMap<K, V, sizeof...(Sizes)>;
 
 // Returns whether the key-value pairs of two maps are equal.
 template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M>
 bool operator==(const SmallMap<K, V, N>& lhs, const SmallMap<Q, W, M>& rhs) {
-    if (lhs.size() != rhs.size()) return false;
+  if (lhs.size() != rhs.size()) return false;
 
-    for (const auto& [k, v] : lhs) {
-        const auto& lv = v;
-        if (!rhs.find(k, [&lv](const auto& rv) { return lv == rv; }).value_or(false)) {
-            return false;
-        }
+  for (const auto& [k, v] : lhs) {
+    const auto& lv = v;
+    if (!rhs.find(k, [&lv](const auto& rv) { return lv == rv; }).value_or(false)) {
+      return false;
     }
+  }
 
-    return true;
+  return true;
 }
 
 // TODO: Remove in C++20.
 template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M>
 inline bool operator!=(const SmallMap<K, V, N>& lhs, const SmallMap<Q, W, M>& rhs) {
-    return !(lhs == rhs);
+  return !(lhs == rhs);
 }
 
-} // namespace android::ftl
+}  // namespace android::ftl
diff --git a/include/ftl/small_vector.h b/include/ftl/small_vector.h
index a8686ba..cb0ae35 100644
--- a/include/ftl/small_vector.h
+++ b/include/ftl/small_vector.h
@@ -41,231 +41,227 @@
 //
 // Example usage:
 //
-//     ftl::SmallVector<char, 3> vector;
-//     assert(vector.empty());
-//     assert(!vector.dynamic());
+//   ftl::SmallVector<char, 3> vector;
+//   assert(vector.empty());
+//   assert(!vector.dynamic());
 //
-//     vector = {'a', 'b', 'c'};
-//     assert(vector.size() == 3u);
-//     assert(!vector.dynamic());
+//   vector = {'a', 'b', 'c'};
+//   assert(vector.size() == 3u);
+//   assert(!vector.dynamic());
 //
-//     vector.push_back('d');
-//     assert(vector.dynamic());
+//   vector.push_back('d');
+//   assert(vector.dynamic());
 //
-//     vector.unstable_erase(vector.begin());
-//     assert(vector == (ftl::SmallVector{'d', 'b', 'c'}));
+//   vector.unstable_erase(vector.begin());
+//   assert(vector == (ftl::SmallVector{'d', 'b', 'c'}));
 //
-//     vector.pop_back();
-//     assert(vector.back() == 'b');
-//     assert(vector.dynamic());
+//   vector.pop_back();
+//   assert(vector.back() == 'b');
+//   assert(vector.dynamic());
 //
-//     const char array[] = "hi";
-//     vector = ftl::SmallVector(array);
-//     assert(vector == (ftl::SmallVector{'h', 'i', '\0'}));
-//     assert(!vector.dynamic());
+//   const char array[] = "hi";
+//   vector = ftl::SmallVector(array);
+//   assert(vector == (ftl::SmallVector{'h', 'i', '\0'}));
+//   assert(!vector.dynamic());
 //
-//     ftl::SmallVector strings = ftl::init::list<std::string>("abc")
-//                                                            ("123456", 3u)
-//                                                            (3u, '?');
-//     assert(strings.size() == 3u);
-//     assert(!strings.dynamic());
+//   ftl::SmallVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?');
+//   assert(strings.size() == 3u);
+//   assert(!strings.dynamic());
 //
-//     assert(strings[0] == "abc");
-//     assert(strings[1] == "123");
-//     assert(strings[2] == "???");
+//   assert(strings[0] == "abc");
+//   assert(strings[1] == "123");
+//   assert(strings[2] == "???");
 //
 template <typename T, std::size_t N>
 class SmallVector final : ArrayTraits<T>, ArrayComparators<SmallVector> {
-    using Static = StaticVector<T, N>;
-    using Dynamic = SmallVector<T, 0>;
+  using Static = StaticVector<T, N>;
+  using Dynamic = SmallVector<T, 0>;
 
-    // TODO: Replace with std::remove_cvref_t in C++20.
-    template <typename U>
-    using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<U>>;
+  // TODO: Replace with std::remove_cvref_t in C++20.
+  template <typename U>
+  using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<U>>;
 
-public:
-    FTL_ARRAY_TRAIT(T, value_type);
-    FTL_ARRAY_TRAIT(T, size_type);
-    FTL_ARRAY_TRAIT(T, difference_type);
+ public:
+  FTL_ARRAY_TRAIT(T, value_type);
+  FTL_ARRAY_TRAIT(T, size_type);
+  FTL_ARRAY_TRAIT(T, difference_type);
 
-    FTL_ARRAY_TRAIT(T, pointer);
-    FTL_ARRAY_TRAIT(T, reference);
-    FTL_ARRAY_TRAIT(T, iterator);
-    FTL_ARRAY_TRAIT(T, reverse_iterator);
+  FTL_ARRAY_TRAIT(T, pointer);
+  FTL_ARRAY_TRAIT(T, reference);
+  FTL_ARRAY_TRAIT(T, iterator);
+  FTL_ARRAY_TRAIT(T, reverse_iterator);
 
-    FTL_ARRAY_TRAIT(T, const_pointer);
-    FTL_ARRAY_TRAIT(T, const_reference);
-    FTL_ARRAY_TRAIT(T, const_iterator);
-    FTL_ARRAY_TRAIT(T, const_reverse_iterator);
+  FTL_ARRAY_TRAIT(T, const_pointer);
+  FTL_ARRAY_TRAIT(T, const_reference);
+  FTL_ARRAY_TRAIT(T, const_iterator);
+  FTL_ARRAY_TRAIT(T, const_reverse_iterator);
 
-    // Creates an empty vector.
-    SmallVector() = default;
+  // Creates an empty vector.
+  SmallVector() = default;
 
-    // Constructs at most N elements. See StaticVector for underlying constructors.
-    template <typename Arg, typename... Args,
-              typename = std::enable_if_t<!is_small_vector<remove_cvref_t<Arg>>{}>>
-    SmallVector(Arg&& arg, Args&&... args)
-          : vector_(std::in_place_type<Static>, std::forward<Arg>(arg),
-                    std::forward<Args>(args)...) {}
+  // Constructs at most N elements. See StaticVector for underlying constructors.
+  template <typename Arg, typename... Args,
+            typename = std::enable_if_t<!is_small_vector<remove_cvref_t<Arg>>{}>>
+  SmallVector(Arg&& arg, Args&&... args)
+      : vector_(std::in_place_type<Static>, std::forward<Arg>(arg), std::forward<Args>(args)...) {}
 
-    // Copies at most N elements from a smaller convertible vector.
-    template <typename U, std::size_t M, typename = std::enable_if_t<M <= N>>
-    SmallVector(const SmallVector<U, M>& other)
-          : SmallVector(kIteratorRange, other.begin(), other.end()) {}
+  // Copies at most N elements from a smaller convertible vector.
+  template <typename U, std::size_t M, typename = std::enable_if_t<M <= N>>
+  SmallVector(const SmallVector<U, M>& other)
+      : SmallVector(kIteratorRange, other.begin(), other.end()) {}
 
-    void swap(SmallVector& other) { vector_.swap(other.vector_); }
+  void swap(SmallVector& other) { vector_.swap(other.vector_); }
 
-    // Returns whether the vector is backed by static or dynamic storage.
-    bool dynamic() const { return std::holds_alternative<Dynamic>(vector_); }
+  // Returns whether the vector is backed by static or dynamic storage.
+  bool dynamic() const { return std::holds_alternative<Dynamic>(vector_); }
 
-    // Avoid std::visit as it generates a dispatch table.
-#define DISPATCH(T, F, ...)                                                                \
-    T F() __VA_ARGS__ {                                                                    \
-        return dynamic() ? std::get<Dynamic>(vector_).F() : std::get<Static>(vector_).F(); \
-    }
+  // Avoid std::visit as it generates a dispatch table.
+#define DISPATCH(T, F, ...)                                                            \
+  T F() __VA_ARGS__ {                                                                  \
+    return dynamic() ? std::get<Dynamic>(vector_).F() : std::get<Static>(vector_).F(); \
+  }
 
-    DISPATCH(size_type, max_size, const)
-    DISPATCH(size_type, size, const)
-    DISPATCH(bool, empty, const)
+  DISPATCH(size_type, max_size, const)
+  DISPATCH(size_type, size, const)
+  DISPATCH(bool, empty, const)
 
-    // noexcept to suppress warning about zero variadic macro arguments.
-    DISPATCH(iterator, begin, noexcept)
-    DISPATCH(const_iterator, begin, const)
-    DISPATCH(const_iterator, cbegin, const)
+  // noexcept to suppress warning about zero variadic macro arguments.
+  DISPATCH(iterator, begin, noexcept)
+  DISPATCH(const_iterator, begin, const)
+  DISPATCH(const_iterator, cbegin, const)
 
-    DISPATCH(iterator, end, noexcept)
-    DISPATCH(const_iterator, end, const)
-    DISPATCH(const_iterator, cend, const)
+  DISPATCH(iterator, end, noexcept)
+  DISPATCH(const_iterator, end, const)
+  DISPATCH(const_iterator, cend, const)
 
-    DISPATCH(reverse_iterator, rbegin, noexcept)
-    DISPATCH(const_reverse_iterator, rbegin, const)
-    DISPATCH(const_reverse_iterator, crbegin, const)
+  DISPATCH(reverse_iterator, rbegin, noexcept)
+  DISPATCH(const_reverse_iterator, rbegin, const)
+  DISPATCH(const_reverse_iterator, crbegin, const)
 
-    DISPATCH(reverse_iterator, rend, noexcept)
-    DISPATCH(const_reverse_iterator, rend, const)
-    DISPATCH(const_reverse_iterator, crend, const)
+  DISPATCH(reverse_iterator, rend, noexcept)
+  DISPATCH(const_reverse_iterator, rend, const)
+  DISPATCH(const_reverse_iterator, crend, const)
 
-    DISPATCH(iterator, last, noexcept)
-    DISPATCH(const_iterator, last, const)
+  DISPATCH(iterator, last, noexcept)
+  DISPATCH(const_iterator, last, const)
 
-    DISPATCH(reference, front, noexcept)
-    DISPATCH(const_reference, front, const)
+  DISPATCH(reference, front, noexcept)
+  DISPATCH(const_reference, front, const)
 
-    DISPATCH(reference, back, noexcept)
-    DISPATCH(const_reference, back, const)
+  DISPATCH(reference, back, noexcept)
+  DISPATCH(const_reference, back, const)
 
 #undef DISPATCH
 
-    reference operator[](size_type i) {
-        return dynamic() ? std::get<Dynamic>(vector_)[i] : std::get<Static>(vector_)[i];
+  reference operator[](size_type i) {
+    return dynamic() ? std::get<Dynamic>(vector_)[i] : std::get<Static>(vector_)[i];
+  }
+
+  const_reference operator[](size_type i) const { return const_cast<SmallVector&>(*this)[i]; }
+
+  // Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
+  // replacing at end() is erroneous.
+  //
+  // The element is emplaced via move constructor, so type T does not need to define copy/move
+  // assignment, e.g. its data members may be const.
+  //
+  // The arguments may directly or indirectly refer to the element being replaced.
+  //
+  // Iterators to the replaced element point to its replacement, and others remain valid.
+  //
+  template <typename... Args>
+  reference replace(const_iterator it, Args&&... args) {
+    if (dynamic()) {
+      return std::get<Dynamic>(vector_).replace(it, std::forward<Args>(args)...);
+    } else {
+      return std::get<Static>(vector_).replace(it, std::forward<Args>(args)...);
+    }
+  }
+
+  // Appends an element, and returns a reference to it.
+  //
+  // If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
+  // Otherwise, only the end() iterator is invalidated.
+  //
+  template <typename... Args>
+  reference emplace_back(Args&&... args) {
+    constexpr auto kInsertStatic = &Static::template emplace_back<Args...>;
+    constexpr auto kInsertDynamic = &Dynamic::template emplace_back<Args...>;
+    return *insert<kInsertStatic, kInsertDynamic>(std::forward<Args>(args)...);
+  }
+
+  // Appends an element.
+  //
+  // If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
+  // Otherwise, only the end() iterator is invalidated.
+  //
+  void push_back(const value_type& v) {
+    constexpr auto kInsertStatic =
+        static_cast<bool (Static::*)(const value_type&)>(&Static::push_back);
+    constexpr auto kInsertDynamic =
+        static_cast<bool (Dynamic::*)(const value_type&)>(&Dynamic::push_back);
+    insert<kInsertStatic, kInsertDynamic>(v);
+  }
+
+  void push_back(value_type&& v) {
+    constexpr auto kInsertStatic = static_cast<bool (Static::*)(value_type &&)>(&Static::push_back);
+    constexpr auto kInsertDynamic =
+        static_cast<bool (Dynamic::*)(value_type &&)>(&Dynamic::push_back);
+    insert<kInsertStatic, kInsertDynamic>(std::move(v));
+  }
+
+  // Removes the last element. The vector must not be empty, or the call is erroneous.
+  //
+  // The last() and end() iterators are invalidated.
+  //
+  void pop_back() {
+    if (dynamic()) {
+      std::get<Dynamic>(vector_).pop_back();
+    } else {
+      std::get<Static>(vector_).pop_back();
+    }
+  }
+
+  // Erases an element, but does not preserve order. Rather than shifting subsequent elements,
+  // this moves the last element to the slot of the erased element.
+  //
+  // The last() and end() iterators, as well as those to the erased element, are invalidated.
+  //
+  void unstable_erase(iterator it) {
+    if (dynamic()) {
+      std::get<Dynamic>(vector_).unstable_erase(it);
+    } else {
+      std::get<Static>(vector_).unstable_erase(it);
+    }
+  }
+
+ private:
+  template <auto InsertStatic, auto InsertDynamic, typename... Args>
+  auto insert(Args&&... args) {
+    if (Dynamic* const vector = std::get_if<Dynamic>(&vector_)) {
+      return (vector->*InsertDynamic)(std::forward<Args>(args)...);
     }
 
-    const_reference operator[](size_type i) const { return const_cast<SmallVector&>(*this)[i]; }
-
-    // Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
-    // replacing at end() is erroneous.
-    //
-    // The element is emplaced via move constructor, so type T does not need to define copy/move
-    // assignment, e.g. its data members may be const.
-    //
-    // The arguments may directly or indirectly refer to the element being replaced.
-    //
-    // Iterators to the replaced element point to its replacement, and others remain valid.
-    //
-    template <typename... Args>
-    reference replace(const_iterator it, Args&&... args) {
-        if (dynamic()) {
-            return std::get<Dynamic>(vector_).replace(it, std::forward<Args>(args)...);
-        } else {
-            return std::get<Static>(vector_).replace(it, std::forward<Args>(args)...);
-        }
+    auto& vector = std::get<Static>(vector_);
+    if (vector.full()) {
+      return (promote(vector).*InsertDynamic)(std::forward<Args>(args)...);
+    } else {
+      return (vector.*InsertStatic)(std::forward<Args>(args)...);
     }
+  }
 
-    // Appends an element, and returns a reference to it.
-    //
-    // If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
-    // Otherwise, only the end() iterator is invalidated.
-    //
-    template <typename... Args>
-    reference emplace_back(Args&&... args) {
-        constexpr auto kInsertStatic = &Static::template emplace_back<Args...>;
-        constexpr auto kInsertDynamic = &Dynamic::template emplace_back<Args...>;
-        return *insert<kInsertStatic, kInsertDynamic>(std::forward<Args>(args)...);
-    }
+  Dynamic& promote(Static& static_vector) {
+    assert(static_vector.full());
 
-    // Appends an element.
-    //
-    // If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
-    // Otherwise, only the end() iterator is invalidated.
-    //
-    void push_back(const value_type& v) {
-        constexpr auto kInsertStatic =
-                static_cast<bool (Static::*)(const value_type&)>(&Static::push_back);
-        constexpr auto kInsertDynamic =
-                static_cast<bool (Dynamic::*)(const value_type&)>(&Dynamic::push_back);
-        insert<kInsertStatic, kInsertDynamic>(v);
-    }
+    // Allocate double capacity to reduce probability of reallocation.
+    Dynamic vector;
+    vector.reserve(Static::max_size() * 2);
+    std::move(static_vector.begin(), static_vector.end(), std::back_inserter(vector));
 
-    void push_back(value_type&& v) {
-        constexpr auto kInsertStatic =
-                static_cast<bool (Static::*)(value_type&&)>(&Static::push_back);
-        constexpr auto kInsertDynamic =
-                static_cast<bool (Dynamic::*)(value_type&&)>(&Dynamic::push_back);
-        insert<kInsertStatic, kInsertDynamic>(std::move(v));
-    }
+    return vector_.template emplace<Dynamic>(std::move(vector));
+  }
 
-    // Removes the last element. The vector must not be empty, or the call is erroneous.
-    //
-    // The last() and end() iterators are invalidated.
-    //
-    void pop_back() {
-        if (dynamic()) {
-            std::get<Dynamic>(vector_).pop_back();
-        } else {
-            std::get<Static>(vector_).pop_back();
-        }
-    }
-
-    // Erases an element, but does not preserve order. Rather than shifting subsequent elements,
-    // this moves the last element to the slot of the erased element.
-    //
-    // The last() and end() iterators, as well as those to the erased element, are invalidated.
-    //
-    void unstable_erase(iterator it) {
-        if (dynamic()) {
-            std::get<Dynamic>(vector_).unstable_erase(it);
-        } else {
-            std::get<Static>(vector_).unstable_erase(it);
-        }
-    }
-
-private:
-    template <auto InsertStatic, auto InsertDynamic, typename... Args>
-    auto insert(Args&&... args) {
-        if (Dynamic* const vector = std::get_if<Dynamic>(&vector_)) {
-            return (vector->*InsertDynamic)(std::forward<Args>(args)...);
-        }
-
-        auto& vector = std::get<Static>(vector_);
-        if (vector.full()) {
-            return (promote(vector).*InsertDynamic)(std::forward<Args>(args)...);
-        } else {
-            return (vector.*InsertStatic)(std::forward<Args>(args)...);
-        }
-    }
-
-    Dynamic& promote(Static& static_vector) {
-        assert(static_vector.full());
-
-        // Allocate double capacity to reduce probability of reallocation.
-        Dynamic vector;
-        vector.reserve(Static::max_size() * 2);
-        std::move(static_vector.begin(), static_vector.end(), std::back_inserter(vector));
-
-        return vector_.template emplace<Dynamic>(std::move(vector));
-    }
-
-    std::variant<Static, Dynamic> vector_;
+  std::variant<Static, Dynamic> vector_;
 };
 
 // Partial specialization without static storage.
@@ -273,90 +269,90 @@
 class SmallVector<T, 0> final : ArrayTraits<T>,
                                 ArrayIterators<SmallVector<T, 0>, T>,
                                 std::vector<T> {
-    using ArrayTraits<T>::construct_at;
+  using ArrayTraits<T>::construct_at;
 
-    using Iter = ArrayIterators<SmallVector, T>;
-    using Impl = std::vector<T>;
+  using Iter = ArrayIterators<SmallVector, T>;
+  using Impl = std::vector<T>;
 
-    friend Iter;
+  friend Iter;
 
-public:
-    FTL_ARRAY_TRAIT(T, value_type);
-    FTL_ARRAY_TRAIT(T, size_type);
-    FTL_ARRAY_TRAIT(T, difference_type);
+ public:
+  FTL_ARRAY_TRAIT(T, value_type);
+  FTL_ARRAY_TRAIT(T, size_type);
+  FTL_ARRAY_TRAIT(T, difference_type);
 
-    FTL_ARRAY_TRAIT(T, pointer);
-    FTL_ARRAY_TRAIT(T, reference);
-    FTL_ARRAY_TRAIT(T, iterator);
-    FTL_ARRAY_TRAIT(T, reverse_iterator);
+  FTL_ARRAY_TRAIT(T, pointer);
+  FTL_ARRAY_TRAIT(T, reference);
+  FTL_ARRAY_TRAIT(T, iterator);
+  FTL_ARRAY_TRAIT(T, reverse_iterator);
 
-    FTL_ARRAY_TRAIT(T, const_pointer);
-    FTL_ARRAY_TRAIT(T, const_reference);
-    FTL_ARRAY_TRAIT(T, const_iterator);
-    FTL_ARRAY_TRAIT(T, const_reverse_iterator);
+  FTL_ARRAY_TRAIT(T, const_pointer);
+  FTL_ARRAY_TRAIT(T, const_reference);
+  FTL_ARRAY_TRAIT(T, const_iterator);
+  FTL_ARRAY_TRAIT(T, const_reverse_iterator);
 
-    using Impl::Impl;
+  using Impl::Impl;
 
-    using Impl::empty;
-    using Impl::max_size;
-    using Impl::size;
+  using Impl::empty;
+  using Impl::max_size;
+  using Impl::size;
 
-    using Impl::reserve;
+  using Impl::reserve;
 
-    // std::vector iterators are not necessarily raw pointers.
-    iterator begin() { return Impl::data(); }
-    iterator end() { return Impl::data() + size(); }
+  // std::vector iterators are not necessarily raw pointers.
+  iterator begin() { return Impl::data(); }
+  iterator end() { return Impl::data() + size(); }
 
-    using Iter::begin;
-    using Iter::end;
+  using Iter::begin;
+  using Iter::end;
 
-    using Iter::cbegin;
-    using Iter::cend;
+  using Iter::cbegin;
+  using Iter::cend;
 
-    using Iter::rbegin;
-    using Iter::rend;
+  using Iter::rbegin;
+  using Iter::rend;
 
-    using Iter::crbegin;
-    using Iter::crend;
+  using Iter::crbegin;
+  using Iter::crend;
 
-    using Iter::last;
+  using Iter::last;
 
-    using Iter::back;
-    using Iter::front;
+  using Iter::back;
+  using Iter::front;
 
-    using Iter::operator[];
+  using Iter::operator[];
 
-    template <typename... Args>
-    reference replace(const_iterator it, Args&&... args) {
-        value_type element{std::forward<Args>(args)...};
-        std::destroy_at(it);
-        // This is only safe because exceptions are disabled.
-        return *construct_at(it, std::move(element));
-    }
+  template <typename... Args>
+  reference replace(const_iterator it, Args&&... args) {
+    value_type element{std::forward<Args>(args)...};
+    std::destroy_at(it);
+    // This is only safe because exceptions are disabled.
+    return *construct_at(it, std::move(element));
+  }
 
-    template <typename... Args>
-    iterator emplace_back(Args&&... args) {
-        return &Impl::emplace_back(std::forward<Args>(args)...);
-    }
+  template <typename... Args>
+  iterator emplace_back(Args&&... args) {
+    return &Impl::emplace_back(std::forward<Args>(args)...);
+  }
 
-    bool push_back(const value_type& v) {
-        Impl::push_back(v);
-        return true;
-    }
+  bool push_back(const value_type& v) {
+    Impl::push_back(v);
+    return true;
+  }
 
-    bool push_back(value_type&& v) {
-        Impl::push_back(std::move(v));
-        return true;
-    }
+  bool push_back(value_type&& v) {
+    Impl::push_back(std::move(v));
+    return true;
+  }
 
-    using Impl::pop_back;
+  using Impl::pop_back;
 
-    void unstable_erase(iterator it) {
-        if (it != last()) std::iter_swap(it, last());
-        pop_back();
-    }
+  void unstable_erase(iterator it) {
+    if (it != last()) std::iter_swap(it, last());
+    pop_back();
+  }
 
-    void swap(SmallVector& other) { Impl::swap(other); }
+  void swap(SmallVector& other) { Impl::swap(other); }
 };
 
 template <typename>
@@ -377,7 +373,7 @@
 // Deduction guide for in-place constructor.
 template <typename T, std::size_t... Sizes, typename... Types>
 SmallVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&)
-        -> SmallVector<T, sizeof...(Sizes)>;
+    -> SmallVector<T, sizeof...(Sizes)>;
 
 // Deduction guide for StaticVector conversion.
 template <typename T, std::size_t N>
@@ -385,7 +381,7 @@
 
 template <typename T, std::size_t N>
 inline void swap(SmallVector<T, N>& lhs, SmallVector<T, N>& rhs) {
-    lhs.swap(rhs);
+  lhs.swap(rhs);
 }
 
-} // namespace android::ftl
+}  // namespace android::ftl
diff --git a/include/ftl/static_vector.h b/include/ftl/static_vector.h
index 5012175..96a1ae8 100644
--- a/include/ftl/static_vector.h
+++ b/include/ftl/static_vector.h
@@ -28,7 +28,8 @@
 
 namespace android::ftl {
 
-constexpr struct IteratorRangeTag {} kIteratorRange;
+constexpr struct IteratorRangeTag {
+} kIteratorRange;
 
 // Fixed-capacity, statically allocated counterpart of std::vector. Like std::array, StaticVector
 // allocates contiguous storage for N elements of type T at compile time, but stores at most (rather
@@ -43,302 +44,299 @@
 //
 // Example usage:
 //
-//     ftl::StaticVector<char, 3> vector;
-//     assert(vector.empty());
+//   ftl::StaticVector<char, 3> vector;
+//   assert(vector.empty());
 //
-//     vector = {'a', 'b'};
-//     assert(vector.size() == 2u);
+//   vector = {'a', 'b'};
+//   assert(vector.size() == 2u);
 //
-//     vector.push_back('c');
-//     assert(vector.full());
+//   vector.push_back('c');
+//   assert(vector.full());
 //
-//     assert(!vector.push_back('d'));
-//     assert(vector.size() == 3u);
+//   assert(!vector.push_back('d'));
+//   assert(vector.size() == 3u);
 //
-//     vector.unstable_erase(vector.begin());
-//     assert(vector == (ftl::StaticVector{'c', 'b'}));
+//   vector.unstable_erase(vector.begin());
+//   assert(vector == (ftl::StaticVector{'c', 'b'}));
 //
-//     vector.pop_back();
-//     assert(vector.back() == 'c');
+//   vector.pop_back();
+//   assert(vector.back() == 'c');
 //
-//     const char array[] = "hi";
-//     vector = ftl::StaticVector(array);
-//     assert(vector == (ftl::StaticVector{'h', 'i', '\0'}));
+//   const char array[] = "hi";
+//   vector = ftl::StaticVector(array);
+//   assert(vector == (ftl::StaticVector{'h', 'i', '\0'}));
 //
-//     ftl::StaticVector strings = ftl::init::list<std::string>("abc")
-//                                                             ("123456", 3u)
-//                                                             (3u, '?');
-//     assert(strings.size() == 3u);
-//     assert(strings[0] == "abc");
-//     assert(strings[1] == "123");
-//     assert(strings[2] == "???");
+//   ftl::StaticVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?');
+//   assert(strings.size() == 3u);
+//   assert(strings[0] == "abc");
+//   assert(strings[1] == "123");
+//   assert(strings[2] == "???");
 //
 template <typename T, std::size_t N>
 class StaticVector final : ArrayTraits<T>,
                            ArrayIterators<StaticVector<T, N>, T>,
                            ArrayComparators<StaticVector> {
-    static_assert(N > 0);
+  static_assert(N > 0);
 
-    using ArrayTraits<T>::construct_at;
+  using ArrayTraits<T>::construct_at;
 
-    using Iter = ArrayIterators<StaticVector, T>;
-    friend Iter;
+  using Iter = ArrayIterators<StaticVector, T>;
+  friend Iter;
 
-    // There is ambiguity when constructing from two iterator-like elements like pointers:
-    // they could be an iterator range, or arguments for in-place construction. Assume the
-    // latter unless they are input iterators and cannot be used to construct elements. If
-    // the former is intended, the caller can pass an IteratorRangeTag to disambiguate.
-    template <typename I, typename Traits = std::iterator_traits<I>>
-    using is_input_iterator = std::conjunction<
-            std::is_base_of<std::input_iterator_tag, typename Traits::iterator_category>,
-            std::negation<std::is_constructible<T, I>>>;
+  // There is ambiguity when constructing from two iterator-like elements like pointers:
+  // they could be an iterator range, or arguments for in-place construction. Assume the
+  // latter unless they are input iterators and cannot be used to construct elements. If
+  // the former is intended, the caller can pass an IteratorRangeTag to disambiguate.
+  template <typename I, typename Traits = std::iterator_traits<I>>
+  using is_input_iterator =
+      std::conjunction<std::is_base_of<std::input_iterator_tag, typename Traits::iterator_category>,
+                       std::negation<std::is_constructible<T, I>>>;
 
-public:
-    FTL_ARRAY_TRAIT(T, value_type);
-    FTL_ARRAY_TRAIT(T, size_type);
-    FTL_ARRAY_TRAIT(T, difference_type);
+ public:
+  FTL_ARRAY_TRAIT(T, value_type);
+  FTL_ARRAY_TRAIT(T, size_type);
+  FTL_ARRAY_TRAIT(T, difference_type);
 
-    FTL_ARRAY_TRAIT(T, pointer);
-    FTL_ARRAY_TRAIT(T, reference);
-    FTL_ARRAY_TRAIT(T, iterator);
-    FTL_ARRAY_TRAIT(T, reverse_iterator);
+  FTL_ARRAY_TRAIT(T, pointer);
+  FTL_ARRAY_TRAIT(T, reference);
+  FTL_ARRAY_TRAIT(T, iterator);
+  FTL_ARRAY_TRAIT(T, reverse_iterator);
 
-    FTL_ARRAY_TRAIT(T, const_pointer);
-    FTL_ARRAY_TRAIT(T, const_reference);
-    FTL_ARRAY_TRAIT(T, const_iterator);
-    FTL_ARRAY_TRAIT(T, const_reverse_iterator);
+  FTL_ARRAY_TRAIT(T, const_pointer);
+  FTL_ARRAY_TRAIT(T, const_reference);
+  FTL_ARRAY_TRAIT(T, const_iterator);
+  FTL_ARRAY_TRAIT(T, const_reverse_iterator);
 
-    // Creates an empty vector.
-    StaticVector() = default;
+  // Creates an empty vector.
+  StaticVector() = default;
 
-    // Copies and moves a vector, respectively.
-    StaticVector(const StaticVector& other)
-          : StaticVector(kIteratorRange, other.begin(), other.end()) {}
+  // Copies and moves a vector, respectively.
+  StaticVector(const StaticVector& other)
+      : StaticVector(kIteratorRange, other.begin(), other.end()) {}
 
-    StaticVector(StaticVector&& other) { swap<true>(other); }
+  StaticVector(StaticVector&& other) { swap<true>(other); }
 
-    // Copies at most N elements from a smaller convertible vector.
-    template <typename U, std::size_t M, typename = std::enable_if_t<M <= N>>
-    StaticVector(const StaticVector<U, M>& other)
-          : StaticVector(kIteratorRange, other.begin(), other.end()) {}
+  // Copies at most N elements from a smaller convertible vector.
+  template <typename U, std::size_t M, typename = std::enable_if_t<M <= N>>
+  StaticVector(const StaticVector<U, M>& other)
+      : StaticVector(kIteratorRange, other.begin(), other.end()) {}
 
-    // Copies at most N elements from an array.
-    template <typename U, std::size_t M>
-    explicit StaticVector(U (&array)[M])
-          : StaticVector(kIteratorRange, std::begin(array), std::end(array)) {}
+  // Copies at most N elements from an array.
+  template <typename U, std::size_t M>
+  explicit StaticVector(U (&array)[M])
+      : StaticVector(kIteratorRange, std::begin(array), std::end(array)) {}
 
-    // Copies at most N elements from the range [first, last).
-    //
-    // IteratorRangeTag disambiguates with initialization from two iterator-like elements.
-    //
-    template <typename Iterator, typename = std::enable_if_t<is_input_iterator<Iterator>{}>>
-    StaticVector(Iterator first, Iterator last) : StaticVector(kIteratorRange, first, last) {
-        using V = typename std::iterator_traits<Iterator>::value_type;
-        static_assert(std::is_constructible_v<value_type, V>, "Incompatible iterator range");
+  // Copies at most N elements from the range [first, last).
+  //
+  // IteratorRangeTag disambiguates with initialization from two iterator-like elements.
+  //
+  template <typename Iterator, typename = std::enable_if_t<is_input_iterator<Iterator>{}>>
+  StaticVector(Iterator first, Iterator last) : StaticVector(kIteratorRange, first, last) {
+    using V = typename std::iterator_traits<Iterator>::value_type;
+    static_assert(std::is_constructible_v<value_type, V>, "Incompatible iterator range");
+  }
+
+  template <typename Iterator>
+  StaticVector(IteratorRangeTag, Iterator first, Iterator last)
+      : size_(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) {
+    std::uninitialized_copy(first, first + size_, begin());
+  }
+
+  // Constructs at most N elements. The template arguments T and N are inferred using the
+  // deduction guide defined below. Note that T is determined from the first element, and
+  // subsequent elements must have convertible types:
+  //
+  //   ftl::StaticVector vector = {1, 2, 3};
+  //   static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>);
+  //
+  //   const auto copy = "quince"s;
+  //   auto move = "tart"s;
+  //   ftl::StaticVector vector = {copy, std::move(move)};
+  //
+  //   static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>);
+  //
+  template <typename E, typename... Es,
+            typename = std::enable_if_t<std::is_constructible_v<value_type, E>>>
+  StaticVector(E&& element, Es&&... elements)
+      : StaticVector(std::index_sequence<0>{}, std::forward<E>(element),
+                     std::forward<Es>(elements)...) {
+    static_assert(sizeof...(elements) < N, "Too many elements");
+  }
+
+  // Constructs at most N elements in place by forwarding per-element constructor arguments. The
+  // template arguments T and N are inferred using the deduction guide defined below. The syntax
+  // for listing arguments is as follows:
+  //
+  //   ftl::StaticVector vector = ftl::init::list<std::string>("abc")()(3u, '?');
+  //
+  //   static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>);
+  //   assert(vector.full());
+  //   assert(vector[0] == "abc");
+  //   assert(vector[1].empty());
+  //   assert(vector[2] == "???");
+  //
+  template <typename U, std::size_t Size, std::size_t... Sizes, typename... Types>
+  StaticVector(InitializerList<U, std::index_sequence<Size, Sizes...>, Types...>&& list)
+      : StaticVector(std::index_sequence<0, 0, Size>{}, std::make_index_sequence<Size>{},
+                     std::index_sequence<Sizes...>{}, list.tuple) {}
+
+  ~StaticVector() { std::destroy(begin(), end()); }
+
+  StaticVector& operator=(const StaticVector& other) {
+    StaticVector copy(other);
+    swap(copy);
+    return *this;
+  }
+
+  StaticVector& operator=(StaticVector&& other) {
+    std::destroy(begin(), end());
+    size_ = 0;
+    swap<true>(other);
+    return *this;
+  }
+
+  // IsEmpty enables a fast path when the vector is known to be empty at compile time.
+  template <bool IsEmpty = false>
+  void swap(StaticVector&);
+
+  static constexpr size_type max_size() { return N; }
+  size_type size() const { return size_; }
+
+  bool empty() const { return size() == 0; }
+  bool full() const { return size() == max_size(); }
+
+  iterator begin() { return std::launder(reinterpret_cast<pointer>(data_)); }
+  iterator end() { return begin() + size(); }
+
+  using Iter::begin;
+  using Iter::end;
+
+  using Iter::cbegin;
+  using Iter::cend;
+
+  using Iter::rbegin;
+  using Iter::rend;
+
+  using Iter::crbegin;
+  using Iter::crend;
+
+  using Iter::last;
+
+  using Iter::back;
+  using Iter::front;
+
+  using Iter::operator[];
+
+  // Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
+  // replacing at end() is erroneous.
+  //
+  // The element is emplaced via move constructor, so type T does not need to define copy/move
+  // assignment, e.g. its data members may be const.
+  //
+  // The arguments may directly or indirectly refer to the element being replaced.
+  //
+  // Iterators to the replaced element point to its replacement, and others remain valid.
+  //
+  template <typename... Args>
+  reference replace(const_iterator it, Args&&... args) {
+    value_type element{std::forward<Args>(args)...};
+    std::destroy_at(it);
+    // This is only safe because exceptions are disabled.
+    return *construct_at(it, std::move(element));
+  }
+
+  // Appends an element, and returns an iterator to it. If the vector is full, the element is not
+  // inserted, and the end() iterator is returned.
+  //
+  // On success, the end() iterator is invalidated.
+  //
+  template <typename... Args>
+  iterator emplace_back(Args&&... args) {
+    if (full()) return end();
+    const iterator it = construct_at(end(), std::forward<Args>(args)...);
+    ++size_;
+    return it;
+  }
+
+  // Appends an element unless the vector is full, and returns whether the element was inserted.
+  //
+  // On success, the end() iterator is invalidated.
+  //
+  bool push_back(const value_type& v) {
+    // Two statements for sequence point.
+    const iterator it = emplace_back(v);
+    return it != end();
+  }
+
+  bool push_back(value_type&& v) {
+    // Two statements for sequence point.
+    const iterator it = emplace_back(std::move(v));
+    return it != end();
+  }
+
+  // Removes the last element. The vector must not be empty, or the call is erroneous.
+  //
+  // The last() and end() iterators are invalidated.
+  //
+  void pop_back() { unstable_erase(last()); }
+
+  // Erases an element, but does not preserve order. Rather than shifting subsequent elements,
+  // this moves the last element to the slot of the erased element.
+  //
+  // The last() and end() iterators, as well as those to the erased element, are invalidated.
+  //
+  void unstable_erase(const_iterator it) {
+    std::destroy_at(it);
+    if (it != last()) {
+      // Move last element and destroy its source for destructor side effects. This is only
+      // safe because exceptions are disabled.
+      construct_at(it, std::move(back()));
+      std::destroy_at(last());
     }
+    --size_;
+  }
 
-    template <typename Iterator>
-    StaticVector(IteratorRangeTag, Iterator first, Iterator last)
-          : size_(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) {
-        std::uninitialized_copy(first, first + size_, begin());
-    }
+ private:
+  // Recursion for variadic constructor.
+  template <std::size_t I, typename E, typename... Es>
+  StaticVector(std::index_sequence<I>, E&& element, Es&&... elements)
+      : StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) {
+    construct_at(begin() + I, std::forward<E>(element));
+  }
 
-    // Constructs at most N elements. The template arguments T and N are inferred using the
-    // deduction guide defined below. Note that T is determined from the first element, and
-    // subsequent elements must have convertible types:
-    //
-    //     ftl::StaticVector vector = {1, 2, 3};
-    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>);
-    //
-    //     const auto copy = "quince"s;
-    //     auto move = "tart"s;
-    //     ftl::StaticVector vector = {copy, std::move(move)};
-    //
-    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>);
-    //
-    template <typename E, typename... Es,
-              typename = std::enable_if_t<std::is_constructible_v<value_type, E>>>
-    StaticVector(E&& element, Es&&... elements)
-          : StaticVector(std::index_sequence<0>{}, std::forward<E>(element),
-                         std::forward<Es>(elements)...) {
-        static_assert(sizeof...(elements) < N, "Too many elements");
-    }
+  // Base case for variadic constructor.
+  template <std::size_t I>
+  explicit StaticVector(std::index_sequence<I>) : size_(I) {}
 
-    // Constructs at most N elements in place by forwarding per-element constructor arguments. The
-    // template arguments T and N are inferred using the deduction guide defined below. The syntax
-    // for listing arguments is as follows:
-    //
-    //     ftl::StaticVector vector = ftl::init::list<std::string>("abc")()(3u, '?');
-    //
-    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>);
-    //     assert(vector.full());
-    //     assert(vector[0] == "abc");
-    //     assert(vector[1].empty());
-    //     assert(vector[2] == "???");
-    //
-    template <typename U, std::size_t Size, std::size_t... Sizes, typename... Types>
-    StaticVector(InitializerList<U, std::index_sequence<Size, Sizes...>, Types...>&& list)
-          : StaticVector(std::index_sequence<0, 0, Size>{}, std::make_index_sequence<Size>{},
-                         std::index_sequence<Sizes...>{}, list.tuple) {}
+  // Recursion for in-place constructor.
+  //
+  // Construct element I by extracting its arguments from the InitializerList tuple. ArgIndex
+  // is the position of its first argument in Args, and ArgCount is the number of arguments.
+  // The Indices sequence corresponds to [0, ArgCount).
+  //
+  // The Sizes sequence lists the argument counts for elements after I, so Size is the ArgCount
+  // for the next element. The recursion stops when Sizes is empty for the last element.
+  //
+  template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
+            std::size_t Size, std::size_t... Sizes, typename... Args>
+  StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
+               std::index_sequence<Size, Sizes...>, std::tuple<Args...>& tuple)
+      : StaticVector(std::index_sequence<I + 1, ArgIndex + ArgCount, Size>{},
+                     std::make_index_sequence<Size>{}, std::index_sequence<Sizes...>{}, tuple) {
+    construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
+  }
 
-    ~StaticVector() { std::destroy(begin(), end()); }
+  // Base case for in-place constructor.
+  template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
+            typename... Args>
+  StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
+               std::index_sequence<>, std::tuple<Args...>& tuple)
+      : size_(I + 1) {
+    construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
+  }
 
-    StaticVector& operator=(const StaticVector& other) {
-        StaticVector copy(other);
-        swap(copy);
-        return *this;
-    }
-
-    StaticVector& operator=(StaticVector&& other) {
-        std::destroy(begin(), end());
-        size_ = 0;
-        swap<true>(other);
-        return *this;
-    }
-
-    // IsEmpty enables a fast path when the vector is known to be empty at compile time.
-    template <bool IsEmpty = false>
-    void swap(StaticVector&);
-
-    static constexpr size_type max_size() { return N; }
-    size_type size() const { return size_; }
-
-    bool empty() const { return size() == 0; }
-    bool full() const { return size() == max_size(); }
-
-    iterator begin() { return std::launder(reinterpret_cast<pointer>(data_)); }
-    iterator end() { return begin() + size(); }
-
-    using Iter::begin;
-    using Iter::end;
-
-    using Iter::cbegin;
-    using Iter::cend;
-
-    using Iter::rbegin;
-    using Iter::rend;
-
-    using Iter::crbegin;
-    using Iter::crend;
-
-    using Iter::last;
-
-    using Iter::back;
-    using Iter::front;
-
-    using Iter::operator[];
-
-    // Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
-    // replacing at end() is erroneous.
-    //
-    // The element is emplaced via move constructor, so type T does not need to define copy/move
-    // assignment, e.g. its data members may be const.
-    //
-    // The arguments may directly or indirectly refer to the element being replaced.
-    //
-    // Iterators to the replaced element point to its replacement, and others remain valid.
-    //
-    template <typename... Args>
-    reference replace(const_iterator it, Args&&... args) {
-        value_type element{std::forward<Args>(args)...};
-        std::destroy_at(it);
-        // This is only safe because exceptions are disabled.
-        return *construct_at(it, std::move(element));
-    }
-
-    // Appends an element, and returns an iterator to it. If the vector is full, the element is not
-    // inserted, and the end() iterator is returned.
-    //
-    // On success, the end() iterator is invalidated.
-    //
-    template <typename... Args>
-    iterator emplace_back(Args&&... args) {
-        if (full()) return end();
-        const iterator it = construct_at(end(), std::forward<Args>(args)...);
-        ++size_;
-        return it;
-    }
-
-    // Appends an element unless the vector is full, and returns whether the element was inserted.
-    //
-    // On success, the end() iterator is invalidated.
-    //
-    bool push_back(const value_type& v) {
-        // Two statements for sequence point.
-        const iterator it = emplace_back(v);
-        return it != end();
-    }
-
-    bool push_back(value_type&& v) {
-        // Two statements for sequence point.
-        const iterator it = emplace_back(std::move(v));
-        return it != end();
-    }
-
-    // Removes the last element. The vector must not be empty, or the call is erroneous.
-    //
-    // The last() and end() iterators are invalidated.
-    //
-    void pop_back() { unstable_erase(last()); }
-
-    // Erases an element, but does not preserve order. Rather than shifting subsequent elements,
-    // this moves the last element to the slot of the erased element.
-    //
-    // The last() and end() iterators, as well as those to the erased element, are invalidated.
-    //
-    void unstable_erase(const_iterator it) {
-        std::destroy_at(it);
-        if (it != last()) {
-            // Move last element and destroy its source for destructor side effects. This is only
-            // safe because exceptions are disabled.
-            construct_at(it, std::move(back()));
-            std::destroy_at(last());
-        }
-        --size_;
-    }
-
-private:
-    // Recursion for variadic constructor.
-    template <std::size_t I, typename E, typename... Es>
-    StaticVector(std::index_sequence<I>, E&& element, Es&&... elements)
-          : StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) {
-        construct_at(begin() + I, std::forward<E>(element));
-    }
-
-    // Base case for variadic constructor.
-    template <std::size_t I>
-    explicit StaticVector(std::index_sequence<I>) : size_(I) {}
-
-    // Recursion for in-place constructor.
-    //
-    // Construct element I by extracting its arguments from the InitializerList tuple. ArgIndex
-    // is the position of its first argument in Args, and ArgCount is the number of arguments.
-    // The Indices sequence corresponds to [0, ArgCount).
-    //
-    // The Sizes sequence lists the argument counts for elements after I, so Size is the ArgCount
-    // for the next element. The recursion stops when Sizes is empty for the last element.
-    //
-    template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
-              std::size_t Size, std::size_t... Sizes, typename... Args>
-    StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
-                 std::index_sequence<Size, Sizes...>, std::tuple<Args...>& tuple)
-          : StaticVector(std::index_sequence<I + 1, ArgIndex + ArgCount, Size>{},
-                         std::make_index_sequence<Size>{}, std::index_sequence<Sizes...>{},
-                         tuple) {
-        construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
-    }
-
-    // Base case for in-place constructor.
-    template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
-              typename... Args>
-    StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
-                 std::index_sequence<>, std::tuple<Args...>& tuple)
-          : size_(I + 1) {
-        construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
-    }
-
-    size_type size_ = 0;
-    std::aligned_storage_t<sizeof(value_type), alignof(value_type)> data_[N];
+  size_type size_ = 0;
+  std::aligned_storage_t<sizeof(value_type), alignof(value_type)> data_[N];
 };
 
 // Deduction guide for array constructor.
@@ -353,44 +351,44 @@
 // Deduction guide for in-place constructor.
 template <typename T, std::size_t... Sizes, typename... Types>
 StaticVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&)
-        -> StaticVector<T, sizeof...(Sizes)>;
+    -> StaticVector<T, sizeof...(Sizes)>;
 
 template <typename T, std::size_t N>
 template <bool IsEmpty>
 void StaticVector<T, N>::swap(StaticVector& other) {
-    auto [to, from] = std::make_pair(this, &other);
-    if (from == this) return;
+  auto [to, from] = std::make_pair(this, &other);
+  if (from == this) return;
 
-    // Assume this vector has fewer elements, so the excess of the other vector will be moved to it.
-    auto [min, max] = std::make_pair(size(), other.size());
+  // Assume this vector has fewer elements, so the excess of the other vector will be moved to it.
+  auto [min, max] = std::make_pair(size(), other.size());
 
-    // No elements to swap if moving into an empty vector.
-    if constexpr (IsEmpty) {
-        assert(min == 0);
-    } else {
-        if (min > max) {
-            std::swap(from, to);
-            std::swap(min, max);
-        }
-
-        // Swap elements [0, min).
-        std::swap_ranges(begin(), begin() + min, other.begin());
-
-        // No elements to move if sizes are equal.
-        if (min == max) return;
+  // No elements to swap if moving into an empty vector.
+  if constexpr (IsEmpty) {
+    assert(min == 0);
+  } else {
+    if (min > max) {
+      std::swap(from, to);
+      std::swap(min, max);
     }
 
-    // Move elements [min, max) and destroy their source for destructor side effects.
-    const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max);
-    std::uninitialized_move(first, last, to->begin() + min);
-    std::destroy(first, last);
+    // Swap elements [0, min).
+    std::swap_ranges(begin(), begin() + min, other.begin());
 
-    std::swap(size_, other.size_);
+    // No elements to move if sizes are equal.
+    if (min == max) return;
+  }
+
+  // Move elements [min, max) and destroy their source for destructor side effects.
+  const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max);
+  std::uninitialized_move(first, last, to->begin() + min);
+  std::destroy(first, last);
+
+  std::swap(size_, other.size_);
 }
 
 template <typename T, std::size_t N>
 inline void swap(StaticVector<T, N>& lhs, StaticVector<T, N>& rhs) {
-    lhs.swap(rhs);
+  lhs.swap(rhs);
 }
 
-} // namespace android::ftl
+}  // namespace android::ftl