Merge changes from topic "touch-rotation-precision" into udc-dev
* changes:
TouchInputMapper: Index input device pixels in rotated display space
Add touchscreen rotation precision tests
Add touchscreen orientation precision tests
Add documentation to illustrate some edge cases for input coordinates
diff --git a/services/inputflinger/docs/input_coordinates.md b/services/inputflinger/docs/input_coordinates.md
new file mode 100644
index 0000000..7795710
--- /dev/null
+++ b/services/inputflinger/docs/input_coordinates.md
@@ -0,0 +1,113 @@
+# Input Coordinate Processing in InputFlinger
+
+This document aims to illustrate why we need to take care when converting
+between the discrete and continuous coordinate spaces, especially when
+performing rotations.
+
+The Linux evdev protocol works over **discrete integral** values. The same is
+true for displays, which output discrete pixels. WindowManager also tracks
+window bounds in pixels in the rotated logical display.
+
+However, our `MotionEvent` APIs
+report **floating point** axis values in a **continuous space**. This disparity
+is important to note when working in InputFlinger, which has to make sure the
+discrete raw coordinates are converted to the continuous space correctly in all
+scenarios.
+
+## Disparity between continuous and discrete coordinates during rotation
+
+Let's consider an example of device that has a 3 x 4 screen.
+
+### Natural orientation: No rotation
+
+If the user interacts with the highlighted pixel, the touchscreen would report
+the discreet coordinates (0, 2).
+
+```
+ ┌─────┬─────┬─────┐
+ │ 0,0 │ 1,0 │ 2,0 │
+ ├─────┼─────┼─────┤
+ │ 0,1 │ 1,1 │ 2,1 │
+ ├─────┼─────┼─────┤
+ │█0,2█│ 1,2 │ 2,2 │
+ ├─────┼─────┼─────┤
+ │ 0,3 │ 1,3 │ 2,3 │
+ └─────┴─────┴─────┘
+```
+
+When converted to the continuous space, the point (0, 2) corresponds to the
+location shown below.
+
+```
+ 0 1 2 3
+ 0 ┌─────┬─────┬─────┐
+ │ │ │ │
+ 1 ├─────┼─────┼─────┤
+ │ │ │ │
+ 2 █─────┼─────┼─────┤
+ │ │ │ │
+ 3 ├─────┼─────┼─────┤
+ │ │ │ │
+ 4 └─────┴─────┴─────┘
+```
+
+### Rotated orientation: 90-degree counter-clockwise rotation
+
+When the device is rotated and the same place on the touchscreen is touched, the
+input device will still report the same coordinates of (0, 2).
+
+In the rotated display, that now corresponds to the pixel (2, 2).
+
+```
+ ┌─────┬─────┬─────┬─────┐
+ │ 0,0 │ 1,0 │ 2,0 │ 3,0 │
+ ├─────┼─────┼─────┼─────┤
+ │ 0,1 │ 1,1 │ 2,1 │ 3,1 │
+ ├─────┼─────┼─────┼─────┤
+ │ 0,2 │ 1,2 │█2,2█│ 3,2 │
+ └─────┴─────┴─────┴─────┘
+```
+
+*It is important to note that rotating the device 90 degrees is NOT equivalent
+to rotating the continuous coordinate space by 90 degrees.*
+
+The point (2, 2) now corresponds to a different location in the continuous space
+than before, even though the user was interacting at the same place on the
+touchscreen.
+
+```
+ 0 1 2 3 4
+ 0 ┌─────┬─────┬─────┬─────┐
+ │ │ │ │ │
+ 1 ├─────┼─────┼─────┼─────┤
+ │ │ │ │ │
+ 2 ├─────┼─────█─────┼─────┤
+ │ │ │ │ │
+ 3 └─────┴─────┴─────┴─────┘
+```
+
+If we were to simply (incorrectly) rotate the continuous space from before by
+90 degrees, the touched point would correspond to the location (2, 3), shown
+below. This new point is outside the bounds of the display, since it does not
+correspond to any pixel at that location.
+
+It should be impossible for a touchscreen to generate points outside the bounds
+of the display, because we assume that the area of the touchscreen maps directly
+to the area of the display. Therefore, that point is an invalid coordinate that
+cannot be generated by an input device.
+
+```
+ 0 1 2 3 4
+ 0 ┌─────┬─────┬─────┬─────┐
+ │ │ │ │ ╏
+ 1 ├─────┼─────┼─────┼─────┤
+ │ │ │ │ ╏
+ 2 ├─────┼─────┼─────┼─────┤
+ │ │ │ │ ╏
+ 3 └-----┴-----█-----┴-----┘
+```
+
+The same logic applies to windows as well. When performing hit tests to
+determine if a point in the continuous space falls inside a window's bounds,
+hit test must be performed in the correct orientation, since points on the right
+and bottom edges of the window do not fall within the window bounds.
diff --git a/services/inputflinger/reader/mapper/TouchInputMapper.cpp b/services/inputflinger/reader/mapper/TouchInputMapper.cpp
index 509c2e8..bf7ae27 100644
--- a/services/inputflinger/reader/mapper/TouchInputMapper.cpp
+++ b/services/inputflinger/reader/mapper/TouchInputMapper.cpp
@@ -842,38 +842,60 @@
}
void TouchInputMapper::computeInputTransforms() {
- const ui::Size rawSize{mRawPointerAxes.getRawWidth(), mRawPointerAxes.getRawHeight()};
+ constexpr auto isRotated = [](const ui::Transform::RotationFlags& rotation) {
+ return rotation == ui::Transform::ROT_90 || rotation == ui::Transform::ROT_270;
+ };
- ui::Size rotatedRawSize = rawSize;
- if (mInputDeviceOrientation == ui::ROTATION_270 || mInputDeviceOrientation == ui::ROTATION_90) {
- std::swap(rotatedRawSize.width, rotatedRawSize.height);
- }
- const auto rotationFlags = ui::Transform::toRotationFlags(-mInputDeviceOrientation);
- mRawRotation = ui::Transform{rotationFlags};
+ // See notes about input coordinates in the inputflinger docs:
+ // //frameworks/native/services/inputflinger/docs/input_coordinates.md
// Step 1: Undo the raw offset so that the raw coordinate space now starts at (0, 0).
- ui::Transform undoRawOffset;
- undoRawOffset.set(-mRawPointerAxes.x.minValue, -mRawPointerAxes.y.minValue);
+ ui::Transform undoOffsetInRaw;
+ undoOffsetInRaw.set(-mRawPointerAxes.x.minValue, -mRawPointerAxes.y.minValue);
- // Step 2: Rotate the raw coordinates to the expected orientation.
- ui::Transform rotate;
- // When rotating raw coordinates, the raw size will be used as an offset.
- // Account for the extra unit added to the raw range when the raw size was calculated.
- rotate.set(rotationFlags, rotatedRawSize.width - 1, rotatedRawSize.height - 1);
+ // Step 2: Rotate the raw coordinates to account for input device orientation. The coordinates
+ // will now be in the same orientation as the display in ROTATION_0.
+ // Note: Negating an ui::Rotation value will give its inverse rotation.
+ const auto inputDeviceOrientation = ui::Transform::toRotationFlags(-mParameters.orientation);
+ const ui::Size orientedRawSize = isRotated(inputDeviceOrientation)
+ ? ui::Size{mRawPointerAxes.getRawHeight(), mRawPointerAxes.getRawWidth()}
+ : ui::Size{mRawPointerAxes.getRawWidth(), mRawPointerAxes.getRawHeight()};
+ // When rotating raw values, account for the extra unit added when calculating the raw range.
+ const auto orientInRaw = ui::Transform(inputDeviceOrientation, orientedRawSize.width - 1,
+ orientedRawSize.height - 1);
- // Step 3: Scale the raw coordinates to the display space.
- ui::Transform scaleToDisplay;
- const float xScale = static_cast<float>(mDisplayBounds.width) / rotatedRawSize.width;
- const float yScale = static_cast<float>(mDisplayBounds.height) / rotatedRawSize.height;
- scaleToDisplay.set(xScale, 0, 0, yScale);
+ // Step 3: Rotate the raw coordinates to account for the display rotation. The coordinates will
+ // now be in the same orientation as the rotated display. There is no need to rotate the
+ // coordinates to the display rotation if the device is not orientation-aware.
+ const auto viewportRotation = ui::Transform::toRotationFlags(-mViewport.orientation);
+ const auto rotatedRawSize = mParameters.orientationAware && isRotated(viewportRotation)
+ ? ui::Size{orientedRawSize.height, orientedRawSize.width}
+ : orientedRawSize;
+ // When rotating raw values, account for the extra unit added when calculating the raw range.
+ const auto rotateInRaw = mParameters.orientationAware
+ ? ui::Transform(viewportRotation, rotatedRawSize.width - 1, rotatedRawSize.height - 1)
+ : ui::Transform();
- mRawToDisplay = (scaleToDisplay * (rotate * undoRawOffset));
+ // Step 4: Scale the raw coordinates to the display space.
+ // - Here, we assume that the raw surface of the touch device maps perfectly to the surface
+ // of the display panel. This is usually true for touchscreens.
+ // - From this point onward, we are no longer in the discrete space of the raw coordinates but
+ // are in the continuous space of the logical display.
+ ui::Transform scaleRawToDisplay;
+ const float xScale = static_cast<float>(mViewport.deviceWidth) / rotatedRawSize.width;
+ const float yScale = static_cast<float>(mViewport.deviceHeight) / rotatedRawSize.height;
+ scaleRawToDisplay.set(xScale, 0, 0, yScale);
- // Calculate the transform that takes raw coordinates to the rotated display space.
- ui::Transform displayToRotatedDisplay;
- displayToRotatedDisplay.set(ui::Transform::toRotationFlags(-mViewport.orientation),
- mViewport.deviceWidth, mViewport.deviceHeight);
- mRawToRotatedDisplay = displayToRotatedDisplay * mRawToDisplay;
+ // Step 5: Undo the display rotation to bring us back to the un-rotated display coordinate space
+ // that InputReader uses.
+ const auto undoRotateInDisplay =
+ ui::Transform(viewportRotation, mViewport.deviceWidth, mViewport.deviceHeight)
+ .inverse();
+
+ // Now put it all together!
+ mRawToRotatedDisplay = (scaleRawToDisplay * (rotateInRaw * (orientInRaw * undoOffsetInRaw)));
+ mRawToDisplay = (undoRotateInDisplay * mRawToRotatedDisplay);
+ mRawRotation = ui::Transform{mRawToDisplay.getOrientation()};
}
void TouchInputMapper::configureInputDevice(nsecs_t when, bool* outResetNeeded) {
@@ -949,6 +971,9 @@
mPhysicalFrameInRotatedDisplay = {mViewport.physicalLeft, mViewport.physicalTop,
mViewport.physicalRight, mViewport.physicalBottom};
+ // TODO(b/257118693): Remove the dependence on the old orientation/rotation logic that
+ // uses mInputDeviceOrientation. The new logic uses the transforms calculated in
+ // computeInputTransforms().
// InputReader works in the un-rotated display coordinate space, so we don't need to do
// anything if the device is already orientation-aware. If the device is not
// orientation-aware, then we need to apply the inverse rotation of the display so that
diff --git a/services/inputflinger/tests/InputReader_test.cpp b/services/inputflinger/tests/InputReader_test.cpp
index 1119f73..0855683 100644
--- a/services/inputflinger/tests/InputReader_test.cpp
+++ b/services/inputflinger/tests/InputReader_test.cpp
@@ -6754,28 +6754,30 @@
// The values inside DisplayViewport are expected to be pre-rotated. This updates the current
// DisplayViewport to pre-rotate the values. The viewport's physical display will be set to the
// rotated equivalent of the given un-rotated physical display bounds.
- void configurePhysicalDisplay(ui::Rotation orientation, Rect naturalPhysicalDisplay) {
+ void configurePhysicalDisplay(ui::Rotation orientation, Rect naturalPhysicalDisplay,
+ int32_t naturalDisplayWidth = DISPLAY_WIDTH,
+ int32_t naturalDisplayHeight = DISPLAY_HEIGHT) {
uint32_t inverseRotationFlags;
- auto width = DISPLAY_WIDTH;
- auto height = DISPLAY_HEIGHT;
+ auto rotatedWidth = naturalDisplayWidth;
+ auto rotatedHeight = naturalDisplayHeight;
switch (orientation) {
case ui::ROTATION_90:
inverseRotationFlags = ui::Transform::ROT_270;
- std::swap(width, height);
+ std::swap(rotatedWidth, rotatedHeight);
break;
case ui::ROTATION_180:
inverseRotationFlags = ui::Transform::ROT_180;
break;
case ui::ROTATION_270:
inverseRotationFlags = ui::Transform::ROT_90;
- std::swap(width, height);
+ std::swap(rotatedWidth, rotatedHeight);
break;
case ui::ROTATION_0:
inverseRotationFlags = ui::Transform::ROT_0;
break;
}
- const ui::Transform rotation(inverseRotationFlags, width, height);
+ const ui::Transform rotation(inverseRotationFlags, rotatedWidth, rotatedHeight);
const Rect rotatedPhysicalDisplay = rotation.transform(naturalPhysicalDisplay);
std::optional<DisplayViewport> internalViewport =
@@ -6794,8 +6796,8 @@
v.physicalRight = rotatedPhysicalDisplay.right;
v.physicalBottom = rotatedPhysicalDisplay.bottom;
- v.deviceWidth = width;
- v.deviceHeight = height;
+ v.deviceWidth = rotatedWidth;
+ v.deviceHeight = rotatedHeight;
v.isActive = true;
v.uniqueId = UNIQUE_ID;
@@ -6909,6 +6911,197 @@
}
}
+// --- TouchscreenPrecisionTests ---
+
+// This test suite is used to ensure that touchscreen devices are scaled and configured correctly
+// in various orientations and with different display rotations. We configure the touchscreen to
+// have a higher resolution than that of the display by an integer scale factor in each axis so that
+// we can enforce that coordinates match precisely as expected.
+class TouchscreenPrecisionTestsFixture : public TouchDisplayProjectionTest,
+ public ::testing::WithParamInterface<ui::Rotation> {
+public:
+ void SetUp() override {
+ SingleTouchInputMapperTest::SetUp();
+
+ // Prepare the raw axes to have twice the resolution of the display in the X axis and
+ // four times the resolution of the display in the Y axis.
+ prepareButtons();
+ mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, PRECISION_RAW_X_MIN, PRECISION_RAW_X_MAX,
+ 0, 0);
+ mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, PRECISION_RAW_Y_MIN, PRECISION_RAW_Y_MAX,
+ 0, 0);
+ }
+
+ static const int32_t PRECISION_RAW_X_MIN = TouchInputMapperTest::RAW_X_MIN;
+ static const int32_t PRECISION_RAW_X_MAX = PRECISION_RAW_X_MIN + DISPLAY_WIDTH * 2 - 1;
+ static const int32_t PRECISION_RAW_Y_MIN = TouchInputMapperTest::RAW_Y_MIN;
+ static const int32_t PRECISION_RAW_Y_MAX = PRECISION_RAW_Y_MIN + DISPLAY_HEIGHT * 4 - 1;
+
+ static const std::array<Point, 4> kRawCorners;
+};
+
+const std::array<Point, 4> TouchscreenPrecisionTestsFixture::kRawCorners = {{
+ {PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MIN}, // left-top
+ {PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MIN}, // right-top
+ {PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MAX}, // right-bottom
+ {PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MAX}, // left-bottom
+}};
+
+// Tests for how the touchscreen is oriented relative to the natural orientation of the display.
+// For example, if a touchscreen is configured with an orientation of 90 degrees, it is a portrait
+// touchscreen panel that is used on a device whose natural display orientation is in landscape.
+TEST_P(TouchscreenPrecisionTestsFixture, OrientationPrecision) {
+ enum class Orientation {
+ ORIENTATION_0 = ui::toRotationInt(ui::ROTATION_0),
+ ORIENTATION_90 = ui::toRotationInt(ui::ROTATION_90),
+ ORIENTATION_180 = ui::toRotationInt(ui::ROTATION_180),
+ ORIENTATION_270 = ui::toRotationInt(ui::ROTATION_270),
+ ftl_last = ORIENTATION_270,
+ };
+ using Orientation::ORIENTATION_0, Orientation::ORIENTATION_90, Orientation::ORIENTATION_180,
+ Orientation::ORIENTATION_270;
+ static const std::map<Orientation, std::array<vec2, 4> /*mappedCorners*/> kMappedCorners = {
+ {ORIENTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}},
+ {ORIENTATION_90, {{{0, 479.5}, {0, 0}, {799.75, 0}, {799.75, 479.5}}}},
+ {ORIENTATION_180, {{{479.5, 799.75}, {0, 799.75}, {0, 0}, {479.5, 0}}}},
+ {ORIENTATION_270, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}},
+ };
+
+ const auto touchscreenOrientation = static_cast<Orientation>(ui::toRotationInt(GetParam()));
+
+ // Configure the touchscreen as being installed in the one of the four different orientations
+ // relative to the display.
+ addConfigurationProperty("touch.deviceType", "touchScreen");
+ addConfigurationProperty("touch.orientation", ftl::enum_string(touchscreenOrientation).c_str());
+ prepareDisplay(ui::ROTATION_0);
+
+ SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
+
+ // If the touchscreen is installed in a rotated orientation relative to the display (i.e. in
+ // orientations of either 90 or 270) this means the display's natural resolution will be
+ // flipped.
+ const bool displayRotated =
+ touchscreenOrientation == ORIENTATION_90 || touchscreenOrientation == ORIENTATION_270;
+ const int32_t width = displayRotated ? DISPLAY_HEIGHT : DISPLAY_WIDTH;
+ const int32_t height = displayRotated ? DISPLAY_WIDTH : DISPLAY_HEIGHT;
+ const Rect physicalFrame{0, 0, width, height};
+ configurePhysicalDisplay(ui::ROTATION_0, physicalFrame, width, height);
+
+ const auto& expectedPoints = kMappedCorners.at(touchscreenOrientation);
+ const float expectedPrecisionX = displayRotated ? 4 : 2;
+ const float expectedPrecisionY = displayRotated ? 2 : 4;
+
+ // Test all four corners.
+ for (int i = 0; i < 4; i++) {
+ const auto& raw = kRawCorners[i];
+ processDown(mapper, raw.x, raw.y);
+ processSync(mapper);
+ const auto& expected = expectedPoints[i];
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
+ WithCoords(expected.x, expected.y),
+ WithPrecision(expectedPrecisionX, expectedPrecisionY))))
+ << "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
+ << "with touchscreen orientation "
+ << ftl::enum_string(touchscreenOrientation).c_str() << ", expected point ("
+ << expected.x << ", " << expected.y << ").";
+ processUp(mapper);
+ processSync(mapper);
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
+ WithCoords(expected.x, expected.y))));
+ }
+}
+
+TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionWhenOrientationAware) {
+ static const std::map<ui::Rotation /*rotation*/, std::array<vec2, 4> /*mappedCorners*/>
+ kMappedCorners = {
+ {ui::ROTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}},
+ {ui::ROTATION_90, {{{0.5, 0}, {480, 0}, {480, 799.75}, {0.5, 799.75}}}},
+ {ui::ROTATION_180, {{{0.5, 0.25}, {480, 0.25}, {480, 800}, {0.5, 800}}}},
+ {ui::ROTATION_270, {{{0, 0.25}, {479.5, 0.25}, {479.5, 800}, {0, 800}}}},
+ };
+
+ const ui::Rotation displayRotation = GetParam();
+
+ addConfigurationProperty("touch.deviceType", "touchScreen");
+ prepareDisplay(displayRotation);
+
+ SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
+
+ const auto& expectedPoints = kMappedCorners.at(displayRotation);
+
+ // Test all four corners.
+ for (int i = 0; i < 4; i++) {
+ const auto& expected = expectedPoints[i];
+ const auto& raw = kRawCorners[i];
+ processDown(mapper, raw.x, raw.y);
+ processSync(mapper);
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
+ WithCoords(expected.x, expected.y), WithPrecision(2, 4))))
+ << "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
+ << "with display rotation " << ui::toCString(displayRotation)
+ << ", expected point (" << expected.x << ", " << expected.y << ").";
+ processUp(mapper);
+ processSync(mapper);
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
+ WithCoords(expected.x, expected.y))));
+ }
+}
+
+TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionOrientationAwareInOri270) {
+ static const std::map<ui::Rotation /*orientation*/, std::array<vec2, 4> /*mappedCorners*/>
+ kMappedCorners = {
+ {ui::ROTATION_0, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}},
+ {ui::ROTATION_90, {{{800, 0}, {800, 479.5}, {0.25, 479.5}, {0.25, 0}}}},
+ {ui::ROTATION_180, {{{800, 0.5}, {800, 480}, {0.25, 480}, {0.25, 0.5}}}},
+ {ui::ROTATION_270, {{{799.75, 0.5}, {799.75, 480}, {0, 480}, {0, 0.5}}}},
+ };
+
+ const ui::Rotation displayRotation = GetParam();
+
+ addConfigurationProperty("touch.deviceType", "touchScreen");
+ addConfigurationProperty("touch.orientation", "ORIENTATION_270");
+
+ SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
+
+ // Ori 270, so width and height swapped
+ const Rect physicalFrame{0, 0, DISPLAY_HEIGHT, DISPLAY_WIDTH};
+ prepareDisplay(displayRotation);
+ configurePhysicalDisplay(displayRotation, physicalFrame, DISPLAY_HEIGHT, DISPLAY_WIDTH);
+
+ const auto& expectedPoints = kMappedCorners.at(displayRotation);
+
+ // Test all four corners.
+ for (int i = 0; i < 4; i++) {
+ const auto& expected = expectedPoints[i];
+ const auto& raw = kRawCorners[i];
+ processDown(mapper, raw.x, raw.y);
+ processSync(mapper);
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
+ WithCoords(expected.x, expected.y), WithPrecision(4, 2))))
+ << "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
+ << "with display rotation " << ui::toCString(displayRotation)
+ << ", expected point (" << expected.x << ", " << expected.y << ").";
+ processUp(mapper);
+ processSync(mapper);
+ ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
+ AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
+ WithCoords(expected.x, expected.y))));
+ }
+}
+
+// Run the precision tests for all rotations.
+INSTANTIATE_TEST_SUITE_P(TouchscreenPrecisionTests, TouchscreenPrecisionTestsFixture,
+ ::testing::Values(ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180,
+ ui::ROTATION_270),
+ [](const testing::TestParamInfo<ui::Rotation>& testParamInfo) {
+ return ftl::enum_string(testParamInfo.param);
+ });
+
// --- ExternalStylusFusionTest ---
class ExternalStylusFusionTest : public SingleTouchInputMapperTest {
diff --git a/services/inputflinger/tests/TestInputListenerMatchers.h b/services/inputflinger/tests/TestInputListenerMatchers.h
index b9d9607..edd14f8 100644
--- a/services/inputflinger/tests/TestInputListenerMatchers.h
+++ b/services/inputflinger/tests/TestInputListenerMatchers.h
@@ -176,4 +176,10 @@
return arg.downTime == downTime;
}
+MATCHER_P2(WithPrecision, xPrecision, yPrecision, "MotionEvent with specified precision") {
+ *result_listener << "expected x-precision " << xPrecision << " and y-precision " << yPrecision
+ << ", but got " << arg.xPrecision << " and " << arg.yPrecision;
+ return arg.xPrecision == xPrecision && arg.yPrecision == yPrecision;
+}
+
} // namespace android