Add AHardwareBuffer_isSupported.
This new function will check whether a buffer with the given description
is allocatable. If the function returns false, buffer allocation will
never succeed. The current implementation performs a trial allocation
of a small buffer, but in the future this will be replaced by a HAL query.
Bug: 115660272
Test: Builds and passes CTS on Pixel 2.
Change-Id: Id0b1573ebf3194b1163324da773279da95782143
diff --git a/libs/nativewindow/AHardwareBuffer.cpp b/libs/nativewindow/AHardwareBuffer.cpp
index 7e26b0b..a19fe17 100644
--- a/libs/nativewindow/AHardwareBuffer.cpp
+++ b/libs/nativewindow/AHardwareBuffer.cpp
@@ -41,33 +41,11 @@
// ----------------------------------------------------------------------------
int AHardwareBuffer_allocate(const AHardwareBuffer_Desc* desc, AHardwareBuffer** outBuffer) {
- if (!outBuffer || !desc)
- return BAD_VALUE;
-
- if (!AHardwareBuffer_isValidPixelFormat(desc->format)) {
- ALOGE("Invalid AHardwareBuffer pixel format %u (%#x))", desc->format, desc->format);
- return BAD_VALUE;
- }
+ if (!outBuffer || !desc) return BAD_VALUE;
+ if (!AHardwareBuffer_isValidDescription(desc, /*log=*/true)) return BAD_VALUE;
int format = AHardwareBuffer_convertToPixelFormat(desc->format);
- if (desc->rfu0 != 0 || desc->rfu1 != 0) {
- ALOGE("AHardwareBuffer_Desc::rfu fields must be 0");
- return BAD_VALUE;
- }
-
- if (desc->format == AHARDWAREBUFFER_FORMAT_BLOB && desc->height != 1) {
- ALOGE("Height must be 1 when using the AHARDWAREBUFFER_FORMAT_BLOB format");
- return BAD_VALUE;
- }
-
- if ((desc->usage & (AHARDWAREBUFFER_USAGE_CPU_READ_MASK | AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK)) &&
- (desc->usage & AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT)) {
- ALOGE("AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT requires AHARDWAREBUFFER_USAGE_CPU_READ_NEVER "
- "and AHARDWAREBUFFER_USAGE_CPU_WRITE_NEVER");
- return BAD_VALUE;
- }
-
- uint64_t usage = AHardwareBuffer_convertToGrallocUsageBits(desc->usage);
+ uint64_t usage = AHardwareBuffer_convertToGrallocUsageBits(desc->usage);
sp<GraphicBuffer> gbuffer(new GraphicBuffer(
desc->width, desc->height, format, desc->layers, usage,
std::string("AHardwareBuffer pid [") + std::to_string(getpid()) + "]"));
@@ -122,19 +100,26 @@
if (usage & ~(AHARDWAREBUFFER_USAGE_CPU_READ_MASK |
AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK)) {
ALOGE("Invalid usage flags passed to AHardwareBuffer_lock; only "
- " AHARDWAREBUFFER_USAGE_CPU_* flags are allowed");
+ "AHARDWAREBUFFER_USAGE_CPU_* flags are allowed");
return BAD_VALUE;
}
usage = AHardwareBuffer_convertToGrallocUsageBits(usage);
- GraphicBuffer* gBuffer = AHardwareBuffer_to_GraphicBuffer(buffer);
+ GraphicBuffer* gbuffer = AHardwareBuffer_to_GraphicBuffer(buffer);
+
+ if (gbuffer->getLayerCount() > 1) {
+ ALOGE("Buffer with multiple layers passed to AHardwareBuffer_lock; "
+ "only buffers with one layer are allowed");
+ return INVALID_OPERATION;
+ }
+
Rect bounds;
if (!rect) {
- bounds.set(Rect(gBuffer->getWidth(), gBuffer->getHeight()));
+ bounds.set(Rect(gbuffer->getWidth(), gbuffer->getHeight()));
} else {
bounds.set(Rect(rect->left, rect->top, rect->right, rect->bottom));
}
- return gBuffer->lockAsync(usage, usage, bounds, outVirtualAddress, fence);
+ return gbuffer->lockAsync(usage, usage, bounds, outVirtualAddress, fence);
}
int AHardwareBuffer_unlock(AHardwareBuffer* buffer, int32_t* fence) {
@@ -274,6 +259,25 @@
return NO_ERROR;
}
+int AHardwareBuffer_isSupported(const AHardwareBuffer_Desc* desc) {
+ if (!desc) return 0;
+ if (!AHardwareBuffer_isValidDescription(desc, /*log=*/false)) return 0;
+
+ // Make a trial allocation.
+ // TODO(b/115660272): add implementation that uses a HAL query.
+ AHardwareBuffer_Desc trialDesc = *desc;
+ trialDesc.width = 4;
+ trialDesc.height = desc->format == AHARDWAREBUFFER_FORMAT_BLOB ? 1 : 4;
+ trialDesc.layers = desc->layers == 1 ? 1 : 2;
+ AHardwareBuffer* trialBuffer = nullptr;
+ int result = AHardwareBuffer_allocate(&trialDesc, &trialBuffer);
+ if (result == NO_ERROR) {
+ AHardwareBuffer_release(trialBuffer);
+ return 1;
+ }
+ return 0;
+}
+
// ----------------------------------------------------------------------------
// VNDK functions
@@ -322,14 +326,71 @@
namespace android {
-// A 1:1 mapping of AHardwaqreBuffer bitmasks to gralloc1 bitmasks.
-struct UsageMaskMapping {
- uint64_t hardwareBufferMask;
- uint64_t grallocMask;
-};
+bool AHardwareBuffer_isValidDescription(const AHardwareBuffer_Desc* desc, bool log) {
+ if (desc->width == 0 || desc->height == 0 || desc->layers == 0) {
+ ALOGE_IF(log, "Width, height and layers must all be nonzero");
+ return false;
+ }
-static inline bool containsBits(uint64_t mask, uint64_t bitsToCheck) {
- return (mask & bitsToCheck) == bitsToCheck && bitsToCheck;
+ if (!AHardwareBuffer_isValidPixelFormat(desc->format)) {
+ ALOGE_IF(log, "Invalid AHardwareBuffer pixel format %u (%#x))",
+ desc->format, desc->format);
+ return false;
+ }
+
+ if (desc->rfu0 != 0 || desc->rfu1 != 0) {
+ ALOGE_IF(log, "AHardwareBuffer_Desc::rfu fields must be 0");
+ return false;
+ }
+
+ if (desc->format == AHARDWAREBUFFER_FORMAT_BLOB) {
+ if (desc->height != 1 || desc->layers != 1) {
+ ALOGE_IF(log, "Height and layers must be 1 for AHARDWAREBUFFER_FORMAT_BLOB");
+ return false;
+ }
+ const uint64_t blobInvalidGpuMask =
+ AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
+ AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER |
+ AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE |
+ AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP;
+ if (desc->usage & blobInvalidGpuMask) {
+ ALOGE_IF(log, "Invalid GPU usage flag for AHARDWAREBUFFER_FORMAT_BLOB; "
+ "only AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER is allowed");
+ return false;
+ }
+ if (desc->usage & AHARDWAREBUFFER_USAGE_VIDEO_ENCODE) {
+ ALOGE_IF(log, "AHARDWAREBUFFER_FORMAT_BLOB cannot be encoded as video");
+ return false;
+ }
+ } else {
+ if (desc->usage & AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA) {
+ ALOGE_IF(log, "AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA requires AHARDWAREBUFFER_FORMAT_BLOB");
+ return false;
+ }
+ if (desc->usage & AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER) {
+ ALOGE_IF(log, "AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER requires AHARDWAREBUFFER_FORMAT_BLOB");
+ return false;
+ }
+ }
+
+ if ((desc->usage & (AHARDWAREBUFFER_USAGE_CPU_READ_MASK | AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK)) &&
+ (desc->usage & AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT)) {
+ ALOGE_IF(log, "AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT requires AHARDWAREBUFFER_USAGE_CPU_READ_NEVER "
+ "and AHARDWAREBUFFER_USAGE_CPU_WRITE_NEVER");
+ return false;
+ }
+
+ if (desc->usage & AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP) {
+ if (desc->width != desc->height) {
+ ALOGE_IF(log, "Cube maps must be square");
+ return false;
+ }
+ if (desc->layers % 6 != 0) {
+ ALOGE_IF(log, "Cube map layers must be a multiple of 6");
+ return false;
+ }
+ }
+ return true;
}
bool AHardwareBuffer_isValidPixelFormat(uint32_t format) {
@@ -445,7 +506,7 @@
"gralloc and AHardwareBuffer flags don't match");
static_assert(AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE == (uint64_t)BufferUsage::GPU_TEXTURE,
"gralloc and AHardwareBuffer flags don't match");
- static_assert(AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT == (uint64_t)BufferUsage::GPU_RENDER_TARGET,
+ static_assert(AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER == (uint64_t)BufferUsage::GPU_RENDER_TARGET,
"gralloc and AHardwareBuffer flags don't match");
static_assert(AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT == (uint64_t)BufferUsage::PROTECTED,
"gralloc and AHardwareBuffer flags don't match");
diff --git a/libs/nativewindow/include-private/private/android/AHardwareBufferHelpers.h b/libs/nativewindow/include-private/private/android/AHardwareBufferHelpers.h
index 71f5634..bf688f8 100644
--- a/libs/nativewindow/include-private/private/android/AHardwareBufferHelpers.h
+++ b/libs/nativewindow/include-private/private/android/AHardwareBufferHelpers.h
@@ -28,10 +28,15 @@
#include <stdint.h>
struct AHardwareBuffer;
+struct AHardwareBuffer_Desc;
struct ANativeWindowBuffer;
namespace android {
+// Validates whether the passed description does not have conflicting
+// parameters. Note: this does not verify any platform-specific contraints.
+bool AHardwareBuffer_isValidDescription(const AHardwareBuffer_Desc* desc, bool log);
+
// whether this AHardwareBuffer format is valid
bool AHardwareBuffer_isValidPixelFormat(uint32_t ahardwarebuffer_format);
diff --git a/libs/nativewindow/include/android/hardware_buffer.h b/libs/nativewindow/include/android/hardware_buffer.h
index 23ac60b..03545a6 100644
--- a/libs/nativewindow/include/android/hardware_buffer.h
+++ b/libs/nativewindow/include/android/hardware_buffer.h
@@ -102,8 +102,10 @@
AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM = 0x2b,
/**
- * An opaque binary blob format that must have height 1, with width equal to
- * the buffer size in bytes.
+ * Opaque binary blob format.
+ * Must have height 1 and one layer, with width equal to the buffer
+ * size in bytes. Corresponds to Vulkan buffers and OpenGL buffer
+ * objects. Can be bound to the latter using GL_EXT_external_buffer.
*/
AHARDWAREBUFFER_FORMAT_BLOB = 0x21,
@@ -195,20 +197,25 @@
/// The buffer will be written to by the GPU as a framebuffer attachment.
AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER = 1UL << 9,
/**
- * The buffer will be written to by the GPU as a framebuffer attachment.
- * Note that the name of this flag is somewhat misleading: it does not imply
- * that the buffer contains a color format. A buffer with depth or stencil
- * format that will be used as a framebuffer attachment should also have
- * this flag.
+ * The buffer will be written to by the GPU as a framebuffer
+ * attachment.
+ *
+ * Note that the name of this flag is somewhat misleading: it does
+ * not imply that the buffer contains a color format. A buffer with
+ * depth or stencil format that will be used as a framebuffer
+ * attachment should also have this flag. Use the equivalent flag
+ * AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER to avoid this confusion.
*/
AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT = AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER,
/**
- * The buffer is protected from direct CPU access or being read by non-secure
- * hardware, such as video encoders. This flag is incompatible with CPU
- * read and write flags. It is mainly used when handling DRM video.
- * Refer to the EGL extension EGL_EXT_protected_content and GL extension
- * EXT_protected_textures for more information on how these buffers are expected
- * to behave.
+ * The buffer is protected from direct CPU access or being read by
+ * non-secure hardware, such as video encoders.
+ *
+ * This flag is incompatible with CPU read and write flags. It is
+ * mainly used when handling DRM video. Refer to the EGL extension
+ * EGL_EXT_protected_content and GL extension
+ * GL_EXT_protected_textures for more information on how these
+ * buffers are expected to behave.
*/
AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT = 1UL << 14,
/// The buffer will be read by a hardware video encoder.
@@ -225,11 +232,17 @@
AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER = 1UL << 24,
/**
* The buffer will be used as a cube map texture.
- * When this flag is present, the buffer must have a layer count that is
- * a multiple of 6.
+ * When this flag is present, the buffer must have a layer count
+ * that is a multiple of 6. Note that buffers with this flag must be
+ * bound to OpenGL textures using the extension
+ * GL_EXT_EGL_image_storage instead of GL_KHR_EGL_image.
*/
AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP = 1UL << 25,
- /// The buffer contains a complete mipmap hierarchy.
+ /**
+ * The buffer contains a complete mipmap hierarchy.
+ * Note that buffers with this flag must be bound to OpenGL textures using
+ * the extension GL_EXT_EGL_image_storage instead of GL_KHR_EGL_image.
+ */
AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE = 1UL << 26,
AHARDWAREBUFFER_USAGE_VENDOR_0 = 1ULL << 28,
@@ -255,13 +268,21 @@
};
/**
- * Buffer description. Used for allocating new buffers and querying parameters
- * of existing ones.
+ * Buffer description. Used for allocating new buffers and querying
+ * parameters of existing ones.
*/
typedef struct AHardwareBuffer_Desc {
uint32_t width; ///< Width in pixels.
uint32_t height; ///< Height in pixels.
- uint32_t layers; ///< Number of images in an image array.
+ /**
+ * Number of images in an image array. AHardwareBuffers with one
+ * layer correspond to regular 2D textures. AHardwareBuffers with
+ * more than layer correspond to texture arrays. If the layer count
+ * is a multiple of 6 and the usage flag
+ * AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP is present, the buffer is
+ * a cube map or a cube map array.
+ */
+ uint32_t layers;
uint32_t format; ///< One of AHardwareBuffer_Format.
uint64_t usage; ///< Combination of AHardwareBuffer_UsageFlags.
uint32_t stride; ///< Row stride in pixels, ignored for AHardwareBuffer_allocate()
@@ -290,8 +311,10 @@
int AHardwareBuffer_allocate(const AHardwareBuffer_Desc* desc,
AHardwareBuffer** outBuffer) __INTRODUCED_IN(26);
/**
- * Acquire a reference on the given AHardwareBuffer object. This prevents the
- * object from being deleted until the last reference is removed.
+ * Acquire a reference on the given AHardwareBuffer object.
+ *
+ * This prevents the object from being deleted until the last reference
+ * is removed.
*/
void AHardwareBuffer_acquire(AHardwareBuffer* buffer) __INTRODUCED_IN(26);
@@ -309,50 +332,73 @@
AHardwareBuffer_Desc* outDesc) __INTRODUCED_IN(26);
/**
- * Lock the AHardwareBuffer for reading or writing, depending on the usage flags
- * passed. This call may block if the hardware needs to finish rendering or if
- * CPU caches need to be synchronized, or possibly for other implementation-
- * specific reasons. If fence is not negative, then it specifies a fence file
- * descriptor that will be signaled when the buffer is locked, otherwise the
- * caller will block until the buffer is available.
+ * Lock the AHardwareBuffer for direct CPU access.
*
- * If \a rect is not NULL, the caller promises to modify only data in the area
- * specified by rect. If rect is NULL, the caller may modify the contents of the
- * entire buffer.
+ * This function can lock the buffer for either reading or writing.
+ * It may block if the hardware needs to finish rendering, if CPU caches
+ * need to be synchronized, or possibly for other implementation-
+ * specific reasons.
*
- * The content of the buffer outside of the specified rect is NOT modified
- * by this call.
+ * The passed AHardwareBuffer must have one layer, otherwise the call
+ * will fail.
*
- * The \a usage parameter may only specify AHARDWAREBUFFER_USAGE_CPU_*. If set,
- * then outVirtualAddress is filled with the address of the buffer in virtual
+ * If \a fence is not negative, it specifies a fence file descriptor on
+ * which to wait before locking the buffer. If it's negative, the caller
+ * is responsible for ensuring that writes to the buffer have completed
+ * before calling this function. Using this parameter is more efficient
+ * than waiting on the fence and then calling this function.
+ *
+ * The \a usage parameter may only specify AHARDWAREBUFFER_USAGE_CPU_*.
+ * If set, then outVirtualAddress is filled with the address of the
+ * buffer in virtual memory. The flags must also be compatible with
+ * usage flags specified at buffer creation: if a read flag is passed,
+ * the buffer must have been created with
+ * AHARDWAREBUFFER_USAGE_CPU_READ_RARELY or
+ * AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN. If a write flag is passed, it
+ * must have been created with AHARDWAREBUFFER_USAGE_CPU_WRITE_RARELY or
+ * AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN.
+ *
+ * If \a rect is not NULL, the caller promises to modify only data in
+ * the area specified by rect. If rect is NULL, the caller may modify
+ * the contents of the entire buffer. The content of the buffer outside
+ * of the specified rect is NOT modified by this call.
+ *
+ * It is legal for several different threads to lock a buffer for read
+ * access; none of the threads are blocked.
+ *
+ * Locking a buffer simultaneously for write or read/write is undefined,
+ * but will neither terminate the process nor block the caller.
+ * AHardwareBuffer_lock may return an error or leave the buffer's
+ * content in an indeterminate state.
+ *
+ * If the buffer has AHARDWAREBUFFER_FORMAT_BLOB, it is legal lock it
+ * for reading and writing in multiple threads and/or processes
+ * simultaneously, and the contents of the buffer behave like shared
* memory.
*
- * THREADING CONSIDERATIONS:
- *
- * It is legal for several different threads to lock a buffer for read access;
- * none of the threads are blocked.
- *
- * Locking a buffer simultaneously for write or read/write is undefined, but
- * will neither terminate the process nor block the caller; AHardwareBuffer_lock
- * may return an error or leave the buffer's content into an indeterminate
- * state.
- *
- * \return 0 on success, -EINVAL if \a buffer is NULL or if the usage
- * flags are not a combination of AHARDWAREBUFFER_USAGE_CPU_*, or an error
- * number of the lock fails for any reason.
+ * \return 0 on success. -EINVAL if \a buffer is NULL, the usage flags
+ * are not a combination of AHARDWAREBUFFER_USAGE_CPU_*, or the buffer
+ * has more than one layer. Error number if the lock fails for any other
+ * reason.
*/
int AHardwareBuffer_lock(AHardwareBuffer* buffer, uint64_t usage,
int32_t fence, const ARect* rect, void** outVirtualAddress) __INTRODUCED_IN(26);
/**
- * Unlock the AHardwareBuffer; must be called after all changes to the buffer
- * are completed by the caller. If fence is not NULL then it will be set to a
- * file descriptor that is signaled when all pending work on the buffer is
- * completed. The caller is responsible for closing the fence when it is no
- * longer needed.
+ * Unlock the AHardwareBuffer from direct CPU access.
*
- * \return 0 on success, -EINVAL if \a buffer is NULL, or an error
- * number if the unlock fails for any reason.
+ * Must be called after all changes to the buffer are completed by the
+ * caller. If \a fence is NULL, the function will block until all work
+ * is completed. Otherwise, \a fence will be set either to a valid file
+ * descriptor or to -1. The file descriptor will become signaled once
+ * the unlocking is complete and buffer contents are updated.
+ * The caller is responsible for closing the file descriptor once it's
+ * no longer needed. The value -1 indicates that unlocking has already
+ * completed before the function returned and no further operations are
+ * necessary.
+ *
+ * \return 0 on success. -EINVAL if \a buffer is NULL. Error number if
+ * the unlock fails for any reason.
*/
int AHardwareBuffer_unlock(AHardwareBuffer* buffer, int32_t* fence) __INTRODUCED_IN(26);
@@ -365,7 +411,7 @@
int AHardwareBuffer_sendHandleToUnixSocket(const AHardwareBuffer* buffer, int socketFd) __INTRODUCED_IN(26);
/**
- * Receive the AHardwareBuffer from an AF_UNIX socket.
+ * Receive an AHardwareBuffer from an AF_UNIX socket.
*
* \return 0 on success, -EINVAL if \a outBuffer is NULL, or an error
* number if the operation fails for any reason.
@@ -374,6 +420,29 @@
#endif // __ANDROID_API__ >= 26
+#if __ANDROID_API__ >= 29
+
+/**
+ * Test whether the given format and usage flag combination is
+ * allocatable.
+ *
+ * If this function returns true, it means that a buffer with the given
+ * description can be allocated on this implementation, unless resource
+ * exhaustion occurs. If this function returns false, it means that the
+ * allocation of the given description will never succeed.
+ *
+ * The return value of this function may depend on all fields in the
+ * description, except stride, which is always ignored. For example,
+ * some implementations have implementation-defined limits on texture
+ * size and layer count.
+ *
+ * \return 1 if the format and usage flag combination is allocatable,
+ * 0 otherwise.
+ */
+int AHardwareBuffer_isSupported(const AHardwareBuffer_Desc* desc) __INTRODUCED_IN(29);
+
+#endif // __ANDROID_API__ >= 29
+
__END_DECLS
#endif // ANDROID_HARDWARE_BUFFER_H
diff --git a/libs/nativewindow/libnativewindow.map.txt b/libs/nativewindow/libnativewindow.map.txt
index 753954d..a796e97 100644
--- a/libs/nativewindow/libnativewindow.map.txt
+++ b/libs/nativewindow/libnativewindow.map.txt
@@ -5,6 +5,7 @@
AHardwareBuffer_createFromHandle; # vndk
AHardwareBuffer_describe;
AHardwareBuffer_getNativeHandle; # vndk
+ AHardwareBuffer_isSupported; # introduced=29
AHardwareBuffer_lock;
AHardwareBuffer_recvHandleFromUnixSocket;
AHardwareBuffer_release;