inputflinger_tests: Put `FakeEventHub` in its own file

I would like to be able to put automated tests for the new
`TouchpadEventMapper` in their own file, rather than
InputReader_tests.cpp. To do this I'll need some of the test utilities
in their own files, too.

Aside from extracting the `FakeEventHub` definition into its own file
and putting method bodies into a .cpp file, I've made a few other minor
refactors:

* Use an early return to reduce nesting in `markSupportedKeyCodes`
* Use a ternary instead of an `if` in `getScanCodeState`
* Remove some single-use `device` variables and replace their use with a
  call to `getDevice`
* Reordered the methods in the .h to make the grouping a little more
  logical
* Tried to follow "Include What You Use" in the new files

Bug: 251196347
Test: atest inputflinger_tests

Change-Id: I55fe8267976d7aba58e1e4067b041d92dfd5347d

to fixup

Change-Id: I59df4e03db7e30cf7d17425ed38fe7f639dec836
diff --git a/services/inputflinger/tests/FakeEventHub.cpp b/services/inputflinger/tests/FakeEventHub.cpp
new file mode 100644
index 0000000..f6cf1cc
--- /dev/null
+++ b/services/inputflinger/tests/FakeEventHub.cpp
@@ -0,0 +1,590 @@
+/*
+ * Copyright 2022 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "FakeEventHub.h"
+
+#include <android-base/thread_annotations.h>
+#include <gtest/gtest.h>
+#include <linux/input-event-codes.h>
+
+#include "TestConstants.h"
+
+namespace android {
+
+const std::string FakeEventHub::BATTERY_DEVPATH = "/sys/devices/mydevice/power_supply/mybattery";
+
+FakeEventHub::~FakeEventHub() {
+    for (size_t i = 0; i < mDevices.size(); i++) {
+        delete mDevices.valueAt(i);
+    }
+}
+
+void FakeEventHub::addDevice(int32_t deviceId, const std::string& name,
+                             ftl::Flags<InputDeviceClass> classes, int bus) {
+    Device* device = new Device(classes);
+    device->identifier.name = name;
+    device->identifier.bus = bus;
+    mDevices.add(deviceId, device);
+
+    enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0);
+}
+
+void FakeEventHub::removeDevice(int32_t deviceId) {
+    delete mDevices.valueFor(deviceId);
+    mDevices.removeItem(deviceId);
+
+    enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0);
+}
+
+bool FakeEventHub::isDeviceEnabled(int32_t deviceId) const {
+    Device* device = getDevice(deviceId);
+    if (device == nullptr) {
+        ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
+        return false;
+    }
+    return device->enabled;
+}
+
+status_t FakeEventHub::enableDevice(int32_t deviceId) {
+    status_t result;
+    Device* device = getDevice(deviceId);
+    if (device == nullptr) {
+        ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
+        return BAD_VALUE;
+    }
+    if (device->enabled) {
+        ALOGW("Duplicate call to %s, device %" PRId32 " already enabled", __func__, deviceId);
+        return OK;
+    }
+    result = device->enable();
+    return result;
+}
+
+status_t FakeEventHub::disableDevice(int32_t deviceId) {
+    Device* device = getDevice(deviceId);
+    if (device == nullptr) {
+        ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
+        return BAD_VALUE;
+    }
+    if (!device->enabled) {
+        ALOGW("Duplicate call to %s, device %" PRId32 " already disabled", __func__, deviceId);
+        return OK;
+    }
+    return device->disable();
+}
+
+void FakeEventHub::finishDeviceScan() {
+    enqueueEvent(ARBITRARY_TIME, READ_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0);
+}
+
+void FakeEventHub::addConfigurationProperty(int32_t deviceId, const char* key, const char* value) {
+    getDevice(deviceId)->configuration.addProperty(key, value);
+}
+
+void FakeEventHub::addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) {
+    getDevice(deviceId)->configuration.addAll(configuration);
+}
+
+void FakeEventHub::addAbsoluteAxis(int32_t deviceId, int axis, int32_t minValue, int32_t maxValue,
+                                   int flat, int fuzz, int resolution) {
+    Device* device = getDevice(deviceId);
+
+    RawAbsoluteAxisInfo info;
+    info.valid = true;
+    info.minValue = minValue;
+    info.maxValue = maxValue;
+    info.flat = flat;
+    info.fuzz = fuzz;
+    info.resolution = resolution;
+    device->absoluteAxes.add(axis, info);
+}
+
+void FakeEventHub::addRelativeAxis(int32_t deviceId, int32_t axis) {
+    getDevice(deviceId)->relativeAxes.add(axis, true);
+}
+
+void FakeEventHub::setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
+    getDevice(deviceId)->keyCodeStates.replaceValueFor(keyCode, state);
+}
+
+void FakeEventHub::setCountryCode(int32_t deviceId, InputDeviceCountryCode countryCode) {
+    getDevice(deviceId)->countryCode = countryCode;
+}
+
+void FakeEventHub::setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
+    getDevice(deviceId)->scanCodeStates.replaceValueFor(scanCode, state);
+}
+
+void FakeEventHub::setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
+    getDevice(deviceId)->switchStates.replaceValueFor(switchCode, state);
+}
+
+void FakeEventHub::setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) {
+    getDevice(deviceId)->absoluteAxisValue.replaceValueFor(axis, value);
+}
+
+void FakeEventHub::addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t keyCode,
+                          uint32_t flags) {
+    Device* device = getDevice(deviceId);
+    KeyInfo info;
+    info.keyCode = keyCode;
+    info.flags = flags;
+    if (scanCode) {
+        device->keysByScanCode.add(scanCode, info);
+    }
+    if (usageCode) {
+        device->keysByUsageCode.add(usageCode, info);
+    }
+}
+
+void FakeEventHub::addKeyCodeMapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) {
+    getDevice(deviceId)->keyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode);
+}
+
+void FakeEventHub::addLed(int32_t deviceId, int32_t led, bool initialState) {
+    getDevice(deviceId)->leds.add(led, initialState);
+}
+
+void FakeEventHub::addSensorAxis(int32_t deviceId, int32_t absCode,
+                                 InputDeviceSensorType sensorType, int32_t sensorDataIndex) {
+    SensorInfo info;
+    info.sensorType = sensorType;
+    info.sensorDataIndex = sensorDataIndex;
+    getDevice(deviceId)->sensorsByAbsCode.emplace(absCode, info);
+}
+
+void FakeEventHub::setMscEvent(int32_t deviceId, int32_t mscEvent) {
+    typename BitArray<MSC_MAX>::Buffer buffer;
+    buffer[mscEvent / 32] = 1 << mscEvent % 32;
+    getDevice(deviceId)->mscBitmask.loadFromBuffer(buffer);
+}
+
+void FakeEventHub::addRawLightInfo(int32_t rawId, RawLightInfo&& info) {
+    mRawLightInfos.emplace(rawId, std::move(info));
+}
+
+void FakeEventHub::fakeLightBrightness(int32_t rawId, int32_t brightness) {
+    mLightBrightness.emplace(rawId, brightness);
+}
+
+void FakeEventHub::fakeLightIntensities(int32_t rawId,
+                                        const std::unordered_map<LightColor, int32_t> intensities) {
+    mLightIntensities.emplace(rawId, std::move(intensities));
+}
+
+bool FakeEventHub::getLedState(int32_t deviceId, int32_t led) {
+    return getDevice(deviceId)->leds.valueFor(led);
+}
+
+std::vector<std::string>& FakeEventHub::getExcludedDevices() {
+    return mExcludedDevices;
+}
+
+void FakeEventHub::addVirtualKeyDefinition(int32_t deviceId,
+                                           const VirtualKeyDefinition& definition) {
+    getDevice(deviceId)->virtualKeys.push_back(definition);
+}
+
+void FakeEventHub::enqueueEvent(nsecs_t when, nsecs_t readTime, int32_t deviceId, int32_t type,
+                                int32_t code, int32_t value) {
+    std::scoped_lock<std::mutex> lock(mLock);
+    RawEvent event;
+    event.when = when;
+    event.readTime = readTime;
+    event.deviceId = deviceId;
+    event.type = type;
+    event.code = code;
+    event.value = value;
+    mEvents.push_back(event);
+
+    if (type == EV_ABS) {
+        setAbsoluteAxisValue(deviceId, code, value);
+    }
+}
+
+void FakeEventHub::setVideoFrames(
+        std::unordered_map<int32_t /*deviceId*/, std::vector<TouchVideoFrame>> videoFrames) {
+    mVideoFrames = std::move(videoFrames);
+}
+
+void FakeEventHub::assertQueueIsEmpty() {
+    std::unique_lock<std::mutex> lock(mLock);
+    base::ScopedLockAssertion assumeLocked(mLock);
+    const bool queueIsEmpty =
+            mEventsCondition.wait_for(lock, WAIT_TIMEOUT,
+                                      [this]() REQUIRES(mLock) { return mEvents.size() == 0; });
+    if (!queueIsEmpty) {
+        FAIL() << "Timed out waiting for EventHub queue to be emptied.";
+    }
+}
+
+FakeEventHub::Device* FakeEventHub::getDevice(int32_t deviceId) const {
+    ssize_t index = mDevices.indexOfKey(deviceId);
+    return index >= 0 ? mDevices.valueAt(index) : nullptr;
+}
+
+ftl::Flags<InputDeviceClass> FakeEventHub::getDeviceClasses(int32_t deviceId) const {
+    Device* device = getDevice(deviceId);
+    return device ? device->classes : ftl::Flags<InputDeviceClass>(0);
+}
+
+InputDeviceIdentifier FakeEventHub::getDeviceIdentifier(int32_t deviceId) const {
+    Device* device = getDevice(deviceId);
+    return device ? device->identifier : InputDeviceIdentifier();
+}
+
+int32_t FakeEventHub::getDeviceControllerNumber(int32_t) const {
+    return 0;
+}
+
+void FakeEventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        *outConfiguration = device->configuration;
+    }
+}
+
+status_t FakeEventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
+                                           RawAbsoluteAxisInfo* outAxisInfo) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->absoluteAxes.indexOfKey(axis);
+        if (index >= 0) {
+            *outAxisInfo = device->absoluteAxes.valueAt(index);
+            return OK;
+        }
+    }
+    outAxisInfo->clear();
+    return -1;
+}
+
+bool FakeEventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        return device->relativeAxes.indexOfKey(axis) >= 0;
+    }
+    return false;
+}
+
+bool FakeEventHub::hasInputProperty(int32_t, int) const {
+    return false;
+}
+
+bool FakeEventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        return mscEvent >= 0 && mscEvent <= MSC_MAX ? device->mscBitmask.test(mscEvent) : false;
+    }
+    return false;
+}
+
+status_t FakeEventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
+                              int32_t metaState, int32_t* outKeycode, int32_t* outMetaState,
+                              uint32_t* outFlags) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        const KeyInfo* key = getKey(device, scanCode, usageCode);
+        if (key) {
+            if (outKeycode) {
+                *outKeycode = key->keyCode;
+            }
+            if (outFlags) {
+                *outFlags = key->flags;
+            }
+            if (outMetaState) {
+                *outMetaState = metaState;
+            }
+            return OK;
+        }
+    }
+    return NAME_NOT_FOUND;
+}
+
+const FakeEventHub::KeyInfo* FakeEventHub::getKey(Device* device, int32_t scanCode,
+                                                  int32_t usageCode) const {
+    if (usageCode) {
+        ssize_t index = device->keysByUsageCode.indexOfKey(usageCode);
+        if (index >= 0) {
+            return &device->keysByUsageCode.valueAt(index);
+        }
+    }
+    if (scanCode) {
+        ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
+        if (index >= 0) {
+            return &device->keysByScanCode.valueAt(index);
+        }
+    }
+    return nullptr;
+}
+
+status_t FakeEventHub::mapAxis(int32_t, int32_t, AxisInfo*) const {
+    return NAME_NOT_FOUND;
+}
+
+base::Result<std::pair<InputDeviceSensorType, int32_t>> FakeEventHub::mapSensor(
+        int32_t deviceId, int32_t absCode) const {
+    Device* device = getDevice(deviceId);
+    if (!device) {
+        return Errorf("Sensor device not found.");
+    }
+    auto it = device->sensorsByAbsCode.find(absCode);
+    if (it == device->sensorsByAbsCode.end()) {
+        return Errorf("Sensor map not found.");
+    }
+    const SensorInfo& info = it->second;
+    return std::make_pair(info.sensorType, info.sensorDataIndex);
+}
+
+void FakeEventHub::setExcludedDevices(const std::vector<std::string>& devices) {
+    mExcludedDevices = devices;
+}
+
+std::vector<RawEvent> FakeEventHub::getEvents(int) {
+    std::scoped_lock lock(mLock);
+
+    std::vector<RawEvent> buffer;
+    std::swap(buffer, mEvents);
+
+    mEventsCondition.notify_all();
+    return buffer;
+}
+
+std::vector<TouchVideoFrame> FakeEventHub::getVideoFrames(int32_t deviceId) {
+    auto it = mVideoFrames.find(deviceId);
+    if (it != mVideoFrames.end()) {
+        std::vector<TouchVideoFrame> frames = std::move(it->second);
+        mVideoFrames.erase(deviceId);
+        return frames;
+    }
+    return {};
+}
+
+int32_t FakeEventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
+        if (index >= 0) {
+            return device->scanCodeStates.valueAt(index);
+        }
+    }
+    return AKEY_STATE_UNKNOWN;
+}
+
+InputDeviceCountryCode FakeEventHub::getCountryCode(int32_t deviceId) const {
+    Device* device = getDevice(deviceId);
+    return device ? device->countryCode : InputDeviceCountryCode::INVALID;
+}
+
+int32_t FakeEventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
+        if (index >= 0) {
+            return device->keyCodeStates.valueAt(index);
+        }
+    }
+    return AKEY_STATE_UNKNOWN;
+}
+
+int32_t FakeEventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->switchStates.indexOfKey(sw);
+        if (index >= 0) {
+            return device->switchStates.valueAt(index);
+        }
+    }
+    return AKEY_STATE_UNKNOWN;
+}
+
+status_t FakeEventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis,
+                                            int32_t* outValue) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->absoluteAxisValue.indexOfKey(axis);
+        if (index >= 0) {
+            *outValue = device->absoluteAxisValue.valueAt(index);
+            return OK;
+        }
+    }
+    *outValue = 0;
+    return -1;
+}
+
+int32_t FakeEventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
+    Device* device = getDevice(deviceId);
+    if (!device) {
+        return AKEYCODE_UNKNOWN;
+    }
+    auto it = device->keyCodeMapping.find(locationKeyCode);
+    return it != device->keyCodeMapping.end() ? it->second : locationKeyCode;
+}
+
+// Return true if the device has non-empty key layout.
+bool FakeEventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
+                                         uint8_t* outFlags) const {
+    Device* device = getDevice(deviceId);
+    if (!device) return false;
+
+    bool result = device->keysByScanCode.size() > 0 || device->keysByUsageCode.size() > 0;
+    for (size_t i = 0; i < keyCodes.size(); i++) {
+        for (size_t j = 0; j < device->keysByScanCode.size(); j++) {
+            if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) {
+                outFlags[i] = 1;
+            }
+        }
+        for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
+            if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) {
+                outFlags[i] = 1;
+            }
+        }
+    }
+    return result;
+}
+
+bool FakeEventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
+        return index >= 0;
+    }
+    return false;
+}
+
+bool FakeEventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
+    Device* device = getDevice(deviceId);
+    if (!device) {
+        return false;
+    }
+    for (size_t i = 0; i < device->keysByScanCode.size(); i++) {
+        if (keyCode == device->keysByScanCode.valueAt(i).keyCode) {
+            return true;
+        }
+    }
+    for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
+        if (keyCode == device->keysByUsageCode.valueAt(j).keyCode) {
+            return true;
+        }
+    }
+    return false;
+}
+
+bool FakeEventHub::hasLed(int32_t deviceId, int32_t led) const {
+    Device* device = getDevice(deviceId);
+    return device && device->leds.indexOfKey(led) >= 0;
+}
+
+void FakeEventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
+    Device* device = getDevice(deviceId);
+    if (device) {
+        ssize_t index = device->leds.indexOfKey(led);
+        if (index >= 0) {
+            device->leds.replaceValueAt(led, on);
+        } else {
+            ADD_FAILURE() << "Attempted to set the state of an LED that the EventHub declared "
+                             "was not present.  led="
+                          << led;
+        }
+    }
+}
+
+void FakeEventHub::getVirtualKeyDefinitions(
+        int32_t deviceId, std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
+    outVirtualKeys.clear();
+
+    Device* device = getDevice(deviceId);
+    if (device) {
+        outVirtualKeys = device->virtualKeys;
+    }
+}
+
+const std::shared_ptr<KeyCharacterMap> FakeEventHub::getKeyCharacterMap(int32_t) const {
+    return nullptr;
+}
+
+bool FakeEventHub::setKeyboardLayoutOverlay(int32_t, std::shared_ptr<KeyCharacterMap>) {
+    return false;
+}
+
+std::vector<int32_t> FakeEventHub::getVibratorIds(int32_t deviceId) const {
+    return mVibrators;
+}
+
+std::optional<int32_t> FakeEventHub::getBatteryCapacity(int32_t, int32_t) const {
+    return BATTERY_CAPACITY;
+}
+
+std::optional<int32_t> FakeEventHub::getBatteryStatus(int32_t, int32_t) const {
+    return BATTERY_STATUS;
+}
+
+std::vector<int32_t> FakeEventHub::getRawBatteryIds(int32_t deviceId) const {
+    return {DEFAULT_BATTERY};
+}
+
+std::optional<RawBatteryInfo> FakeEventHub::getRawBatteryInfo(int32_t deviceId,
+                                                              int32_t batteryId) const {
+    if (batteryId != DEFAULT_BATTERY) return {};
+    static const auto BATTERY_INFO = RawBatteryInfo{.id = DEFAULT_BATTERY,
+                                                    .name = "default battery",
+                                                    .flags = InputBatteryClass::CAPACITY,
+                                                    .path = BATTERY_DEVPATH};
+    return BATTERY_INFO;
+}
+
+std::vector<int32_t> FakeEventHub::getRawLightIds(int32_t deviceId) const {
+    std::vector<int32_t> ids;
+    for (const auto& [rawId, info] : mRawLightInfos) {
+        ids.push_back(rawId);
+    }
+    return ids;
+}
+
+std::optional<RawLightInfo> FakeEventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
+    auto it = mRawLightInfos.find(lightId);
+    if (it == mRawLightInfos.end()) {
+        return std::nullopt;
+    }
+    return it->second;
+}
+
+void FakeEventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
+    mLightBrightness.emplace(lightId, brightness);
+}
+
+void FakeEventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
+                                       std::unordered_map<LightColor, int32_t> intensities) {
+    mLightIntensities.emplace(lightId, intensities);
+};
+
+std::optional<int32_t> FakeEventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
+    auto lightIt = mLightBrightness.find(lightId);
+    if (lightIt == mLightBrightness.end()) {
+        return std::nullopt;
+    }
+    return lightIt->second;
+}
+
+std::optional<std::unordered_map<LightColor, int32_t>> FakeEventHub::getLightIntensities(
+        int32_t deviceId, int32_t lightId) const {
+    auto lightIt = mLightIntensities.find(lightId);
+    if (lightIt == mLightIntensities.end()) {
+        return std::nullopt;
+    }
+    return lightIt->second;
+};
+
+} // namespace android