CompositionEngine: base inverse transform on primary display
Layers with geomBufferUsesDisplayInverseTransform set (usually layers
showing a camera preview) were not being rotated correctly on external
displays with hardware composition. Forcing GPU composition avoided
the issue, since BufferLayer.prepareClientLayer() uses the *primary*
display's orientation to create the inverse transformation.
But, the HWC path used each screen's orientation, resulting in a bad
layer rotation when the primary and external displays' orientation
differed. So let's do what the GPU path does.
This, of course, only makes a difference when the primary and secondary
display rotations differ. In our case, we noticed the problem when
running the landscape-oriented CinemaPro app, while our default camera,
which runs in portrait, did not have a problem.
Co-authored-by: Mikael Magnusson <mikael.magnusson@sony.com>
Note: This is an updated version of the change with the same Change-Id
as uploaded to AOSP, as refactoring has continued, and more tests were
added since.
Bug: 155329360
Test: the new unit test fails without the patch
Test: the new unit test passes with the patch
Test: record using Cinema Pro app with an external screen
Reference: I0da22423490a93fe943fd59e6c122aa6aaf30b11
Change-Id: I8b4975a14a0ae42d10e4eeaa66385e72ff00c23d
diff --git a/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp b/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
index c9a070d..81f2dd1 100644
--- a/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
+++ b/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
@@ -223,7 +223,8 @@
return displayTransform.transform(frame);
}
-uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const {
+uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
+ uint32_t internalDisplayRotationFlags) const {
const auto& layerState = *getLayerFE().getCompositionState();
const auto& outputState = getOutput().getState();
@@ -241,10 +242,11 @@
if (layerState.geomBufferUsesDisplayInverseTransform) {
/*
- * the code below applies the primary display's inverse transform to the
- * buffer
+ * We must apply the internal display's inverse transform to the buffer
+ * transform, and not the one for the output this layer is on.
*/
- uint32_t invTransform = outputState.orientation;
+ uint32_t invTransform = internalDisplayRotationFlags;
+
// calculate the inverse transform
if (invTransform & HAL_TRANSFORM_ROT_90) {
invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
@@ -261,9 +263,11 @@
// this gives us only the "orientation" component of the transform
return transform.getOrientation();
-} // namespace impl
+}
-void OutputLayer::updateCompositionState(bool includeGeometry, bool forceClientComposition) {
+void OutputLayer::updateCompositionState(
+ bool includeGeometry, bool forceClientComposition,
+ ui::Transform::RotationFlags internalDisplayRotationFlags) {
const auto* layerFEState = getLayerFE().getCompositionState();
if (!layerFEState) {
return;
@@ -283,8 +287,8 @@
state.displayFrame = calculateOutputDisplayFrame();
state.sourceCrop = calculateOutputSourceCrop();
- state.bufferTransform =
- static_cast<Hwc2::Transform>(calculateOutputRelativeBufferTransform());
+ state.bufferTransform = static_cast<Hwc2::Transform>(
+ calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
if ((layerFEState->isSecure && !outputState.isSecure) ||
(state.bufferTransform & ui::Transform::ROT_INVALID)) {