[RenderEngine] Organize RenderEngine directory.

This patch:
1. adds proper namespace renderengine to all RenderEngine code,
   and namespace gl to all GLES related code
2. creates gl/ directory for GLES backend code
3. Reorder include header files, remove unused header files.

BUG: 112585051
Test: Build, flash, run display validation
Change-Id: I81f0b8831213607cde08562958f7c38ddaf4c9e6
diff --git a/services/surfaceflinger/RenderEngine/gl/ProgramCache.cpp b/services/surfaceflinger/RenderEngine/gl/ProgramCache.cpp
new file mode 100644
index 0000000..a19c1f1
--- /dev/null
+++ b/services/surfaceflinger/RenderEngine/gl/ProgramCache.cpp
@@ -0,0 +1,689 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define ATRACE_TAG ATRACE_TAG_GRAPHICS
+
+#include "ProgramCache.h"
+
+#include <GLES2/gl2.h>
+#include <GLES2/gl2ext.h>
+#include <renderengine/private/Description.h>
+#include <utils/String8.h>
+#include <utils/Trace.h>
+#include "Program.h"
+
+ANDROID_SINGLETON_STATIC_INSTANCE(android::renderengine::gl::ProgramCache)
+
+namespace android {
+namespace renderengine {
+namespace gl {
+
+/*
+ * A simple formatter class to automatically add the endl and
+ * manage the indentation.
+ */
+
+class Formatter;
+static Formatter& indent(Formatter& f);
+static Formatter& dedent(Formatter& f);
+
+class Formatter {
+    String8 mString;
+    int mIndent;
+    typedef Formatter& (*FormaterManipFunc)(Formatter&);
+    friend Formatter& indent(Formatter& f);
+    friend Formatter& dedent(Formatter& f);
+
+public:
+    Formatter() : mIndent(0) {}
+
+    String8 getString() const { return mString; }
+
+    friend Formatter& operator<<(Formatter& out, const char* in) {
+        for (int i = 0; i < out.mIndent; i++) {
+            out.mString.append("    ");
+        }
+        out.mString.append(in);
+        out.mString.append("\n");
+        return out;
+    }
+    friend inline Formatter& operator<<(Formatter& out, const String8& in) {
+        return operator<<(out, in.string());
+    }
+    friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
+        return (*func)(to);
+    }
+};
+Formatter& indent(Formatter& f) {
+    f.mIndent++;
+    return f;
+}
+Formatter& dedent(Formatter& f) {
+    f.mIndent--;
+    return f;
+}
+
+ProgramCache::ProgramCache() {}
+
+ProgramCache::~ProgramCache() {}
+
+void ProgramCache::primeCache(bool useColorManagement) {
+    uint32_t shaderCount = 0;
+    uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK;
+    // Prime the cache for all combinations of the above masks,
+    // leaving off the experimental color matrix mask options.
+
+    nsecs_t timeBefore = systemTime();
+    for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
+        Key shaderKey;
+        shaderKey.set(keyMask, keyVal);
+        uint32_t tex = shaderKey.getTextureTarget();
+        if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
+            continue;
+        }
+        Program* program = mCache.valueFor(shaderKey);
+        if (program == nullptr) {
+            program = generateProgram(shaderKey);
+            mCache.add(shaderKey, program);
+            shaderCount++;
+        }
+    }
+
+    // Prime for sRGB->P3 conversion
+    if (useColorManagement) {
+        Key shaderKey;
+        shaderKey.set(Key::BLEND_MASK | Key::TEXTURE_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK |
+                              Key::INPUT_TF_MASK | Key::OUTPUT_TF_MASK,
+                      Key::BLEND_PREMULT | Key::TEXTURE_EXT | Key::OUTPUT_TRANSFORM_MATRIX_ON |
+                              Key::INPUT_TF_SRGB | Key::OUTPUT_TF_SRGB);
+        for (int i = 0; i < 4; i++) {
+            shaderKey.set(Key::OPACITY_MASK,
+                          (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
+            shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
+            Program* program = mCache.valueFor(shaderKey);
+            if (program == nullptr) {
+                program = generateProgram(shaderKey);
+                mCache.add(shaderKey, program);
+                shaderCount++;
+            }
+        }
+    }
+
+    nsecs_t timeAfter = systemTime();
+    float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
+    ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
+}
+
+ProgramCache::Key ProgramCache::computeKey(const Description& description) {
+    Key needs;
+    needs.set(Key::TEXTURE_MASK,
+              !description.mTextureEnabled
+                      ? Key::TEXTURE_OFF
+                      : description.mTexture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
+                              ? Key::TEXTURE_EXT
+                              : description.mTexture.getTextureTarget() == GL_TEXTURE_2D
+                                      ? Key::TEXTURE_2D
+                                      : Key::TEXTURE_OFF)
+            .set(Key::ALPHA_MASK,
+                 (description.mColor.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
+            .set(Key::BLEND_MASK,
+                 description.mPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
+            .set(Key::OPACITY_MASK,
+                 description.mOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
+            .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
+                 description.hasInputTransformMatrix() ?
+                     Key::INPUT_TRANSFORM_MATRIX_ON : Key::INPUT_TRANSFORM_MATRIX_OFF)
+            .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
+                 description.hasOutputTransformMatrix() || description.hasColorMatrix() ?
+                     Key::OUTPUT_TRANSFORM_MATRIX_ON : Key::OUTPUT_TRANSFORM_MATRIX_OFF);
+
+    needs.set(Key::Y410_BT2020_MASK,
+              description.mY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
+
+    if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+        switch (description.mInputTransferFunction) {
+            case Description::TransferFunction::LINEAR:
+            default:
+                needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
+                break;
+            case Description::TransferFunction::SRGB:
+                needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
+                break;
+            case Description::TransferFunction::ST2084:
+                needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
+                break;
+            case Description::TransferFunction::HLG:
+                needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
+                break;
+        }
+
+        switch (description.mOutputTransferFunction) {
+            case Description::TransferFunction::LINEAR:
+            default:
+                needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
+                break;
+            case Description::TransferFunction::SRGB:
+                needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
+                break;
+            case Description::TransferFunction::ST2084:
+                needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
+                break;
+            case Description::TransferFunction::HLG:
+                needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
+                break;
+        }
+    }
+
+    return needs;
+}
+
+// Generate EOTF that converts signal values to relative display light,
+// both normalized to [0, 1].
+void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
+    switch (needs.getInputTF()) {
+        case Key::INPUT_TF_SRGB:
+            fs << R"__SHADER__(
+                float EOTF_sRGB(float srgb) {
+                    return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
+                }
+
+                vec3 EOTF_sRGB(const vec3 srgb) {
+                    return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
+                }
+
+                vec3 EOTF(const vec3 srgb) {
+                    return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
+                }
+            )__SHADER__";
+            break;
+        case Key::INPUT_TF_ST2084:
+            fs << R"__SHADER__(
+                vec3 EOTF(const highp vec3 color) {
+                    const highp float m1 = (2610.0 / 4096.0) / 4.0;
+                    const highp float m2 = (2523.0 / 4096.0) * 128.0;
+                    const highp float c1 = (3424.0 / 4096.0);
+                    const highp float c2 = (2413.0 / 4096.0) * 32.0;
+                    const highp float c3 = (2392.0 / 4096.0) * 32.0;
+
+                    highp vec3 tmp = pow(color, 1.0 / vec3(m2));
+                    tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
+                    return pow(tmp, 1.0 / vec3(m1));
+                }
+            )__SHADER__";
+            break;
+        case Key::INPUT_TF_HLG:
+            fs << R"__SHADER__(
+                highp float EOTF_channel(const highp float channel) {
+                    const highp float a = 0.17883277;
+                    const highp float b = 0.28466892;
+                    const highp float c = 0.55991073;
+                    return channel <= 0.5 ? channel * channel / 3.0 :
+                            (exp((channel - c) / a) + b) / 12.0;
+                }
+
+                vec3 EOTF(const highp vec3 color) {
+                    return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
+                            EOTF_channel(color.b));
+                }
+            )__SHADER__";
+            break;
+        default:
+            fs << R"__SHADER__(
+                vec3 EOTF(const vec3 linear) {
+                    return linear;
+                }
+            )__SHADER__";
+            break;
+    }
+}
+
+void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
+    // Convert relative light to absolute light.
+    switch (needs.getInputTF()) {
+        case Key::INPUT_TF_ST2084:
+            fs << R"__SHADER__(
+                highp vec3 ScaleLuminance(highp vec3 color) {
+                    return color * 10000.0;
+                }
+            )__SHADER__";
+            break;
+        case Key::INPUT_TF_HLG:
+            fs << R"__SHADER__(
+                highp vec3 ScaleLuminance(highp vec3 color) {
+                    // The formula is:
+                    // alpha * pow(Y, gamma - 1.0) * color + beta;
+                    // where alpha is 1000.0, gamma is 1.2, beta is 0.0.
+                    return color * 1000.0 * pow(color.y, 0.2);
+                }
+            )__SHADER__";
+            break;
+        default:
+            fs << R"__SHADER__(
+                highp vec3 ScaleLuminance(highp vec3 color) {
+                    return color * displayMaxLuminance;
+                }
+            )__SHADER__";
+            break;
+    }
+
+    // Tone map absolute light to display luminance range.
+    switch (needs.getInputTF()) {
+        case Key::INPUT_TF_ST2084:
+        case Key::INPUT_TF_HLG:
+            switch (needs.getOutputTF()) {
+                case Key::OUTPUT_TF_HLG:
+                    // Right now when mixed PQ and HLG contents are presented,
+                    // HLG content will always be converted to PQ. However, for
+                    // completeness, we simply clamp the value to [0.0, 1000.0].
+                    fs << R"__SHADER__(
+                        highp vec3 ToneMap(highp vec3 color) {
+                            return clamp(color, 0.0, 1000.0);
+                        }
+                    )__SHADER__";
+                    break;
+                case Key::OUTPUT_TF_ST2084:
+                    fs << R"__SHADER__(
+                        highp vec3 ToneMap(highp vec3 color) {
+                            return color;
+                        }
+                    )__SHADER__";
+                    break;
+                default:
+                    fs << R"__SHADER__(
+                        highp vec3 ToneMap(highp vec3 color) {
+                            const float maxMasteringLumi = 1000.0;
+                            const float maxContentLumi = 1000.0;
+                            const float maxInLumi = min(maxMasteringLumi, maxContentLumi);
+                            float maxOutLumi = displayMaxLuminance;
+
+                            float nits = color.y;
+
+                            // clamp to max input luminance
+                            nits = clamp(nits, 0.0, maxInLumi);
+
+                            // scale [0.0, maxInLumi] to [0.0, maxOutLumi]
+                            if (maxInLumi <= maxOutLumi) {
+                                nits *= maxOutLumi / maxInLumi;
+                            } else {
+                                // three control points
+                                const float x0 = 10.0;
+                                const float y0 = 17.0;
+                                float x1 = maxOutLumi * 0.75;
+                                float y1 = x1;
+                                float x2 = x1 + (maxInLumi - x1) / 2.0;
+                                float y2 = y1 + (maxOutLumi - y1) * 0.75;
+
+                                // horizontal distances between the last three control points
+                                float h12 = x2 - x1;
+                                float h23 = maxInLumi - x2;
+                                // tangents at the last three control points
+                                float m1 = (y2 - y1) / h12;
+                                float m3 = (maxOutLumi - y2) / h23;
+                                float m2 = (m1 + m3) / 2.0;
+
+                                if (nits < x0) {
+                                    // scale [0.0, x0] to [0.0, y0] linearly
+                                    float slope = y0 / x0;
+                                    nits *= slope;
+                                } else if (nits < x1) {
+                                    // scale [x0, x1] to [y0, y1] linearly
+                                    float slope = (y1 - y0) / (x1 - x0);
+                                    nits = y0 + (nits - x0) * slope;
+                                } else if (nits < x2) {
+                                    // scale [x1, x2] to [y1, y2] using Hermite interp
+                                    float t = (nits - x1) / h12;
+                                    nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
+                                            (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
+                                } else {
+                                    // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
+                                    float t = (nits - x2) / h23;
+                                    nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
+                                            (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
+                                }
+                            }
+
+                            return color * (nits / max(1e-6, color.y));
+                        }
+                    )__SHADER__";
+                    break;
+            }
+            break;
+        default:
+            // inverse tone map; the output luminance can be up to maxOutLumi.
+            fs << R"__SHADER__(
+                highp vec3 ToneMap(highp vec3 color) {
+                    const float maxOutLumi = 3000.0;
+
+                    const float x0 = 5.0;
+                    const float y0 = 2.5;
+                    float x1 = displayMaxLuminance * 0.7;
+                    float y1 = maxOutLumi * 0.15;
+                    float x2 = displayMaxLuminance * 0.9;
+                    float y2 = maxOutLumi * 0.45;
+                    float x3 = displayMaxLuminance;
+                    float y3 = maxOutLumi;
+
+                    float c1 = y1 / 3.0;
+                    float c2 = y2 / 2.0;
+                    float c3 = y3 / 1.5;
+
+                    float nits = color.y;
+
+                    float scale;
+                    if (nits <= x0) {
+                        // scale [0.0, x0] to [0.0, y0] linearly
+                        const float slope = y0 / x0;
+                        nits *= slope;
+                    } else if (nits <= x1) {
+                        // scale [x0, x1] to [y0, y1] using a curve
+                        float t = (nits - x0) / (x1 - x0);
+                        nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
+                    } else if (nits <= x2) {
+                        // scale [x1, x2] to [y1, y2] using a curve
+                        float t = (nits - x1) / (x2 - x1);
+                        nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
+                    } else {
+                        // scale [x2, x3] to [y2, y3] using a curve
+                        float t = (nits - x2) / (x3 - x2);
+                        nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
+                    }
+
+                    return color * (nits / max(1e-6, color.y));
+                }
+            )__SHADER__";
+            break;
+    }
+
+    // convert absolute light to relative light.
+    switch (needs.getOutputTF()) {
+        case Key::OUTPUT_TF_ST2084:
+            fs << R"__SHADER__(
+                highp vec3 NormalizeLuminance(highp vec3 color) {
+                    return color / 10000.0;
+                }
+            )__SHADER__";
+            break;
+        case Key::OUTPUT_TF_HLG:
+            fs << R"__SHADER__(
+                highp vec3 NormalizeLuminance(highp vec3 color) {
+                    return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
+                }
+            )__SHADER__";
+            break;
+        default:
+            fs << R"__SHADER__(
+                highp vec3 NormalizeLuminance(highp vec3 color) {
+                    return color / displayMaxLuminance;
+                }
+            )__SHADER__";
+            break;
+    }
+}
+
+// Generate OOTF that modifies the relative scence light to relative display light.
+void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
+    if (!needs.needsToneMapping()) {
+        fs << R"__SHADER__(
+            highp vec3 OOTF(const highp vec3 color) {
+                return color;
+            }
+        )__SHADER__";
+    } else {
+        generateToneMappingProcess(fs, needs);
+        fs << R"__SHADER__(
+            highp vec3 OOTF(const highp vec3 color) {
+                return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
+            }
+        )__SHADER__";
+    }
+}
+
+// Generate OETF that converts relative display light to signal values,
+// both normalized to [0, 1]
+void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
+    switch (needs.getOutputTF()) {
+        case Key::OUTPUT_TF_SRGB:
+            fs << R"__SHADER__(
+                float OETF_sRGB(const float linear) {
+                    return linear <= 0.0031308 ?
+                            linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
+                }
+
+                vec3 OETF_sRGB(const vec3 linear) {
+                    return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
+                }
+
+                vec3 OETF(const vec3 linear) {
+                    return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
+                }
+            )__SHADER__";
+            break;
+        case Key::OUTPUT_TF_ST2084:
+            fs << R"__SHADER__(
+                vec3 OETF(const vec3 linear) {
+                    const highp float m1 = (2610.0 / 4096.0) / 4.0;
+                    const highp float m2 = (2523.0 / 4096.0) * 128.0;
+                    const highp float c1 = (3424.0 / 4096.0);
+                    const highp float c2 = (2413.0 / 4096.0) * 32.0;
+                    const highp float c3 = (2392.0 / 4096.0) * 32.0;
+
+                    highp vec3 tmp = pow(linear, vec3(m1));
+                    tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
+                    return pow(tmp, vec3(m2));
+                }
+            )__SHADER__";
+            break;
+        case Key::OUTPUT_TF_HLG:
+            fs << R"__SHADER__(
+                highp float OETF_channel(const highp float channel) {
+                    const highp float a = 0.17883277;
+                    const highp float b = 0.28466892;
+                    const highp float c = 0.55991073;
+                    return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
+                            a * log(12.0 * channel - b) + c;
+                }
+
+                vec3 OETF(const highp vec3 color) {
+                    return vec3(OETF_channel(color.r), OETF_channel(color.g),
+                            OETF_channel(color.b));
+                }
+            )__SHADER__";
+            break;
+        default:
+            fs << R"__SHADER__(
+                vec3 OETF(const vec3 linear) {
+                    return linear;
+                }
+            )__SHADER__";
+            break;
+    }
+}
+
+String8 ProgramCache::generateVertexShader(const Key& needs) {
+    Formatter vs;
+    if (needs.isTexturing()) {
+        vs << "attribute vec4 texCoords;"
+           << "varying vec2 outTexCoords;";
+    }
+    vs << "attribute vec4 position;"
+       << "uniform mat4 projection;"
+       << "uniform mat4 texture;"
+       << "void main(void) {" << indent << "gl_Position = projection * position;";
+    if (needs.isTexturing()) {
+        vs << "outTexCoords = (texture * texCoords).st;";
+    }
+    vs << dedent << "}";
+    return vs.getString();
+}
+
+String8 ProgramCache::generateFragmentShader(const Key& needs) {
+    Formatter fs;
+    if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
+        fs << "#extension GL_OES_EGL_image_external : require";
+    }
+
+    // default precision is required-ish in fragment shaders
+    fs << "precision mediump float;";
+
+    if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
+        fs << "uniform samplerExternalOES sampler;"
+           << "varying vec2 outTexCoords;";
+    } else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
+        fs << "uniform sampler2D sampler;"
+           << "varying vec2 outTexCoords;";
+    }
+
+    if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
+        fs << "uniform vec4 color;";
+    }
+
+    if (needs.isY410BT2020()) {
+        fs << R"__SHADER__(
+            vec3 convertY410BT2020(const vec3 color) {
+                const vec3 offset = vec3(0.0625, 0.5, 0.5);
+                const mat3 transform = mat3(
+                    vec3(1.1678,  1.1678, 1.1678),
+                    vec3(   0.0, -0.1878, 2.1481),
+                    vec3(1.6836, -0.6523,   0.0));
+                // Y is in G, U is in R, and V is in B
+                return clamp(transform * (color.grb - offset), 0.0, 1.0);
+            }
+            )__SHADER__";
+    }
+
+    if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+        // Currently, display maximum luminance is needed when doing tone mapping.
+        if (needs.needsToneMapping()) {
+            fs << "uniform float displayMaxLuminance;";
+        }
+
+        if (needs.hasInputTransformMatrix()) {
+            fs << "uniform mat4 inputTransformMatrix;";
+            fs << R"__SHADER__(
+                highp vec3 InputTransform(const highp vec3 color) {
+                    return vec3(inputTransformMatrix * vec4(color, 1.0));
+                }
+            )__SHADER__";
+        } else {
+            fs << R"__SHADER__(
+                highp vec3 InputTransform(const highp vec3 color) {
+                    return color;
+                }
+            )__SHADER__";
+        }
+
+        // the transformation from a wider colorspace to a narrower one can
+        // result in >1.0 or <0.0 pixel values
+        if (needs.hasOutputTransformMatrix()) {
+            fs << "uniform mat4 outputTransformMatrix;";
+            fs << R"__SHADER__(
+                highp vec3 OutputTransform(const highp vec3 color) {
+                    return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
+                }
+            )__SHADER__";
+        } else {
+            fs << R"__SHADER__(
+                highp vec3 OutputTransform(const highp vec3 color) {
+                    return clamp(color, 0.0, 1.0);
+                }
+            )__SHADER__";
+        }
+
+        generateEOTF(fs, needs);
+        generateOOTF(fs, needs);
+        generateOETF(fs, needs);
+    }
+
+    fs << "void main(void) {" << indent;
+    if (needs.isTexturing()) {
+        fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
+        if (needs.isY410BT2020()) {
+            fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
+        }
+    } else {
+        fs << "gl_FragColor.rgb = color.rgb;";
+        fs << "gl_FragColor.a = 1.0;";
+    }
+    if (needs.isOpaque()) {
+        fs << "gl_FragColor.a = 1.0;";
+    }
+    if (needs.hasAlpha()) {
+        // modulate the current alpha value with alpha set
+        if (needs.isPremultiplied()) {
+            // ... and the color too if we're premultiplied
+            fs << "gl_FragColor *= color.a;";
+        } else {
+            fs << "gl_FragColor.a *= color.a;";
+        }
+    }
+
+    if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+        if (!needs.isOpaque() && needs.isPremultiplied()) {
+            // un-premultiply if needed before linearization
+            // avoid divide by 0 by adding 0.5/256 to the alpha channel
+            fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
+        }
+        fs << "gl_FragColor.rgb = OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));";
+        if (!needs.isOpaque() && needs.isPremultiplied()) {
+            // and re-premultiply if needed after gamma correction
+            fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
+        }
+    }
+
+    fs << dedent << "}";
+    return fs.getString();
+}
+
+Program* ProgramCache::generateProgram(const Key& needs) {
+    ATRACE_CALL();
+
+    // vertex shader
+    String8 vs = generateVertexShader(needs);
+
+    // fragment shader
+    String8 fs = generateFragmentShader(needs);
+
+    Program* program = new Program(needs, vs.string(), fs.string());
+    return program;
+}
+
+void ProgramCache::useProgram(const Description& description) {
+    // generate the key for the shader based on the description
+    Key needs(computeKey(description));
+
+    // look-up the program in the cache
+    Program* program = mCache.valueFor(needs);
+    if (program == nullptr) {
+        // we didn't find our program, so generate one...
+        nsecs_t time = -systemTime();
+        program = generateProgram(needs);
+        mCache.add(needs, program);
+        time += systemTime();
+
+        ALOGV(">>> generated new program: needs=%08X, time=%u ms (%zu programs)", needs.mKey,
+              uint32_t(ns2ms(time)), mCache.size());
+    }
+
+    // here we have a suitable program for this description
+    if (program->isValid()) {
+        program->use();
+        program->setUniforms(description);
+    }
+}
+
+}  // namespace gl
+}  // namespace renderengine
+}  // namespace android