Merge "ultrahdr: Update fuzz application for encode API" into udc-dev
diff --git a/libs/ultrahdr/include/ultrahdr/ultrahdr.h b/libs/ultrahdr/include/ultrahdr/ultrahdr.h
index d6153e9..21751b4 100644
--- a/libs/ultrahdr/include/ultrahdr/ultrahdr.h
+++ b/libs/ultrahdr/include/ultrahdr/ultrahdr.h
@@ -20,7 +20,7 @@
 namespace android::ultrahdr {
 // Color gamuts for image data
 typedef enum {
-  ULTRAHDR_COLORGAMUT_UNSPECIFIED,
+  ULTRAHDR_COLORGAMUT_UNSPECIFIED = -1,
   ULTRAHDR_COLORGAMUT_BT709,
   ULTRAHDR_COLORGAMUT_P3,
   ULTRAHDR_COLORGAMUT_BT2100,
@@ -52,7 +52,7 @@
  */
 struct ultrahdr_metadata_struct {
   // Ultra HDR library version
-  const char* version;
+  std::string version;
   // Max Content Boost for the map
   float maxContentBoost;
   // Min Content Boost for the map
diff --git a/libs/ultrahdr/jpegencoderhelper.cpp b/libs/ultrahdr/jpegencoderhelper.cpp
index 10a7630..ab2f8c7 100644
--- a/libs/ultrahdr/jpegencoderhelper.cpp
+++ b/libs/ultrahdr/jpegencoderhelper.cpp
@@ -22,6 +22,8 @@
 
 namespace android::ultrahdr {
 
+#define ALIGNM(x, m)  ((((x) + ((m) - 1)) / (m)) * (m))
+
 // The destination manager that can access |mResultBuffer| in JpegEncoderHelper.
 struct destination_mgr {
 public:
@@ -175,6 +177,37 @@
     std::unique_ptr<uint8_t[]> empty(new uint8_t[cinfo->image_width]);
     memset(empty.get(), 0, cinfo->image_width);
 
+    const int aligned_width = ALIGNM(cinfo->image_width, kCompressBatchSize);
+    const bool is_width_aligned = (aligned_width == cinfo->image_width);
+    std::unique_ptr<uint8_t[]> buffer_intrm = nullptr;
+    uint8_t* y_plane_intrm = nullptr;
+    uint8_t* u_plane_intrm = nullptr;
+    uint8_t* v_plane_intrm = nullptr;
+    JSAMPROW y_intrm[kCompressBatchSize];
+    JSAMPROW cb_intrm[kCompressBatchSize / 2];
+    JSAMPROW cr_intrm[kCompressBatchSize / 2];
+    JSAMPARRAY planes_intrm[3]{y_intrm, cb_intrm, cr_intrm};
+    if (!is_width_aligned) {
+        size_t mcu_row_size = aligned_width * kCompressBatchSize * 3 / 2;
+        buffer_intrm = std::make_unique<uint8_t[]>(mcu_row_size);
+        y_plane_intrm = buffer_intrm.get();
+        u_plane_intrm = y_plane_intrm + (aligned_width * kCompressBatchSize);
+        v_plane_intrm = u_plane_intrm + (aligned_width * kCompressBatchSize) / 4;
+        for (int i = 0; i < kCompressBatchSize; ++i) {
+            y_intrm[i] = y_plane_intrm + i * aligned_width;
+            memset(y_intrm[i] + cinfo->image_width, 0, aligned_width - cinfo->image_width);
+        }
+        for (int i = 0; i < kCompressBatchSize / 2; ++i) {
+            int offset_intrm = i * (aligned_width / 2);
+            cb_intrm[i] = u_plane_intrm + offset_intrm;
+            cr_intrm[i] = v_plane_intrm + offset_intrm;
+            memset(cb_intrm[i] + cinfo->image_width / 2, 0,
+                   (aligned_width - cinfo->image_width) / 2);
+            memset(cr_intrm[i] + cinfo->image_width / 2, 0,
+                   (aligned_width - cinfo->image_width) / 2);
+        }
+    }
+
     while (cinfo->next_scanline < cinfo->image_height) {
         for (int i = 0; i < kCompressBatchSize; ++i) {
             size_t scanline = cinfo->next_scanline + i;
@@ -183,6 +216,9 @@
             } else {
                 y[i] = empty.get();
             }
+            if (!is_width_aligned) {
+                memcpy(y_intrm[i], y[i], cinfo->image_width);
+            }
         }
         // cb, cr only have half scanlines
         for (int i = 0; i < kCompressBatchSize / 2; ++i) {
@@ -194,9 +230,13 @@
             } else {
                 cb[i] = cr[i] = empty.get();
             }
+            if (!is_width_aligned) {
+                memcpy(cb_intrm[i], cb[i], cinfo->image_width / 2);
+                memcpy(cr_intrm[i], cr[i], cinfo->image_width / 2);
+            }
         }
-
-        int processed = jpeg_write_raw_data(cinfo, planes, kCompressBatchSize);
+        int processed = jpeg_write_raw_data(cinfo, is_width_aligned ? planes : planes_intrm,
+                                            kCompressBatchSize);
         if (processed != kCompressBatchSize) {
             ALOGE("Number of processed lines does not equal input lines.");
             return false;
@@ -213,6 +253,23 @@
     std::unique_ptr<uint8_t[]> empty(new uint8_t[cinfo->image_width]);
     memset(empty.get(), 0, cinfo->image_width);
 
+    const int aligned_width = ALIGNM(cinfo->image_width, kCompressBatchSize);
+    bool is_width_aligned = (aligned_width == cinfo->image_width);
+    std::unique_ptr<uint8_t[]> buffer_intrm = nullptr;
+    uint8_t* y_plane_intrm = nullptr;
+    uint8_t* u_plane_intrm = nullptr;
+    JSAMPROW y_intrm[kCompressBatchSize];
+    JSAMPARRAY planes_intrm[]{y_intrm};
+    if (!is_width_aligned) {
+        size_t mcu_row_size = aligned_width * kCompressBatchSize;
+        buffer_intrm = std::make_unique<uint8_t[]>(mcu_row_size);
+        y_plane_intrm = buffer_intrm.get();
+        for (int i = 0; i < kCompressBatchSize; ++i) {
+            y_intrm[i] = y_plane_intrm + i * aligned_width;
+            memset(y_intrm[i] + cinfo->image_width, 0, aligned_width - cinfo->image_width);
+        }
+    }
+
     while (cinfo->next_scanline < cinfo->image_height) {
         for (int i = 0; i < kCompressBatchSize; ++i) {
             size_t scanline = cinfo->next_scanline + i;
@@ -221,8 +278,12 @@
             } else {
                 y[i] = empty.get();
             }
+            if (!is_width_aligned) {
+                memcpy(y_intrm[i], y[i], cinfo->image_width);
+            }
         }
-        int processed = jpeg_write_raw_data(cinfo, planes, kCompressBatchSize);
+        int processed = jpeg_write_raw_data(cinfo, is_width_aligned ? planes : planes_intrm,
+                                            kCompressBatchSize);
         if (processed != kCompressBatchSize / 2) {
             ALOGE("Number of processed lines does not equal input lines.");
             return false;
diff --git a/libs/ultrahdr/jpegr.cpp b/libs/ultrahdr/jpegr.cpp
index c250aa0..b2bde6c 100644
--- a/libs/ultrahdr/jpegr.cpp
+++ b/libs/ultrahdr/jpegr.cpp
@@ -76,9 +76,9 @@
 // JPEG encoding / decoding will require block based DCT transform 16 x 16 for luma,
 // and 8 x 8 for chroma.
 // Width must be 16 dividable for luma, and 8 dividable for chroma.
-// If this criteria is not ficilitated, we will pad zeros based on the required block size.
+// If this criteria is not facilitated, we will pad zeros based to each line on the
+// required block size.
 static const size_t kJpegBlock = JpegEncoderHelper::kCompressBatchSize;
-static const size_t kJpegBlockSquare = kJpegBlock * kJpegBlock;
 // JPEG compress quality (0 ~ 100) for gain map
 static const int kMapCompressQuality = 85;
 
@@ -145,7 +145,8 @@
     return ERROR_JPEGR_INVALID_NULL_PTR;
   }
 
-  if (hdr_tf <= ULTRAHDR_TF_UNSPECIFIED || hdr_tf > ULTRAHDR_TF_MAX) {
+  if (hdr_tf <= ULTRAHDR_TF_UNSPECIFIED || hdr_tf > ULTRAHDR_TF_MAX
+          || hdr_tf == ULTRAHDR_TF_SRGB) {
     ALOGE("Invalid hdr transfer function %d", hdr_tf);
     return ERROR_JPEGR_INVALID_INPUT_TYPE;
   }
@@ -228,13 +229,8 @@
   metadata.version = kJpegrVersion;
 
   jpegr_uncompressed_struct uncompressed_yuv_420_image;
-  size_t gain_map_length = uncompressed_p010_image->width * uncompressed_p010_image->height * 3 / 2;
-  // Pad a pseudo chroma block (kJpegBlock / 2) x (kJpegBlock / 2)
-  // if width is not kJpegBlock aligned.
-  if (uncompressed_p010_image->width % kJpegBlock != 0) {
-    gain_map_length += kJpegBlockSquare / 4;
-  }
-  unique_ptr<uint8_t[]> uncompressed_yuv_420_image_data = make_unique<uint8_t[]>(gain_map_length);
+  unique_ptr<uint8_t[]> uncompressed_yuv_420_image_data = make_unique<uint8_t[]>(
+      uncompressed_p010_image->width * uncompressed_p010_image->height * 3 / 2);
   uncompressed_yuv_420_image.data = uncompressed_yuv_420_image_data.get();
   JPEGR_CHECK(toneMap(uncompressed_p010_image, &uncompressed_yuv_420_image));
 
@@ -509,11 +505,6 @@
     return ERROR_JPEGR_INVALID_INPUT_TYPE;
   }
 
-  if (gain_map != nullptr && gain_map->data == nullptr) {
-    ALOGE("received nullptr address for gain map data");
-    return ERROR_JPEGR_INVALID_INPUT_TYPE;
-  }
-
   if (output_format == ULTRAHDR_OUTPUT_SDR) {
     JpegDecoderHelper jpeg_decoder;
     if (!jpeg_decoder.decompressImage(compressed_jpegr_image->data, compressed_jpegr_image->length,
@@ -555,6 +546,11 @@
   if (!gain_map_decoder.decompressImage(compressed_map.data, compressed_map.length)) {
     return ERROR_JPEGR_DECODE_ERROR;
   }
+  if ((gain_map_decoder.getDecompressedImageWidth() *
+       gain_map_decoder.getDecompressedImageHeight()) >
+      gain_map_decoder.getDecompressedImageSize()) {
+    return ERROR_JPEGR_CALCULATION_ERROR;
+  }
 
   if (gain_map != nullptr) {
     gain_map->width = gain_map_decoder.getDecompressedImageWidth();
@@ -584,6 +580,11 @@
   if (!jpeg_decoder.decompressImage(compressed_jpegr_image->data, compressed_jpegr_image->length)) {
     return ERROR_JPEGR_DECODE_ERROR;
   }
+  if ((jpeg_decoder.getDecompressedImageWidth() *
+       jpeg_decoder.getDecompressedImageHeight() * 3 / 2) >
+      jpeg_decoder.getDecompressedImageSize()) {
+    return ERROR_JPEGR_CALCULATION_ERROR;
+  }
 
   if (exif != nullptr) {
     if (exif->data == nullptr) {
@@ -605,7 +606,6 @@
   uncompressed_yuv_420_image.data = jpeg_decoder.getDecompressedImagePtr();
   uncompressed_yuv_420_image.width = jpeg_decoder.getDecompressedImageWidth();
   uncompressed_yuv_420_image.height = jpeg_decoder.getDecompressedImageHeight();
-
   JPEGR_CHECK(applyGainMap(&uncompressed_yuv_420_image, &map, &uhdr_metadata, output_format,
                            max_display_boost, dest));
   return NO_ERROR;
@@ -848,6 +848,20 @@
     return ERROR_JPEGR_INVALID_NULL_PTR;
   }
 
+  // TODO: remove once map scaling factor is computed based on actual map dims
+  size_t image_width = uncompressed_yuv_420_image->width;
+  size_t image_height = uncompressed_yuv_420_image->height;
+  size_t map_width = image_width / kMapDimensionScaleFactor;
+  size_t map_height = image_height / kMapDimensionScaleFactor;
+  map_width = static_cast<size_t>(
+          floor((map_width + kJpegBlock - 1) / kJpegBlock)) * kJpegBlock;
+  map_height = ((map_height + 1) >> 1) << 1;
+  if (map_width != uncompressed_gain_map->width
+   || map_height != uncompressed_gain_map->height) {
+    ALOGE("gain map dimensions and primary image dimensions are not to scale");
+    return ERROR_JPEGR_INVALID_INPUT_TYPE;
+  }
+
   dest->width = uncompressed_yuv_420_image->width;
   dest->height = uncompressed_yuv_420_image->height;
   ShepardsIDW idwTable(kMapDimensionScaleFactor);
diff --git a/libs/ultrahdr/tests/jpegencoderhelper_test.cpp b/libs/ultrahdr/tests/jpegencoderhelper_test.cpp
index 8f18ac0..f0e1fa4 100644
--- a/libs/ultrahdr/tests/jpegencoderhelper_test.cpp
+++ b/libs/ultrahdr/tests/jpegencoderhelper_test.cpp
@@ -108,18 +108,9 @@
     ASSERT_GT(encoder.getCompressedImageSize(), static_cast<uint32_t>(0));
 }
 
-// The width of the "unaligned" image is not 16-aligned, and will fail if encoded directly.
-// Should pass with the padding zero method.
 TEST_F(JpegEncoderHelperTest, encodeUnalignedImage) {
     JpegEncoderHelper encoder;
-    const size_t paddingZeroLength = JpegEncoderHelper::kCompressBatchSize
-            * JpegEncoderHelper::kCompressBatchSize / 4;
-    std::unique_ptr<uint8_t[]> imageWithPaddingZeros(
-            new uint8_t[UNALIGNED_IMAGE_WIDTH * UNALIGNED_IMAGE_HEIGHT * 3 / 2
-            + paddingZeroLength]);
-    memcpy(imageWithPaddingZeros.get(), mUnalignedImage.buffer.get(),
-            UNALIGNED_IMAGE_WIDTH * UNALIGNED_IMAGE_HEIGHT * 3 / 2);
-    EXPECT_TRUE(encoder.compressImage(imageWithPaddingZeros.get(), mUnalignedImage.width,
+    EXPECT_TRUE(encoder.compressImage(mUnalignedImage.buffer.get(), mUnalignedImage.width,
                                       mUnalignedImage.height, JPEG_QUALITY, NULL, 0));
     ASSERT_GT(encoder.getCompressedImageSize(), static_cast<uint32_t>(0));
 }
diff --git a/services/inputflinger/dispatcher/InputDispatcher.cpp b/services/inputflinger/dispatcher/InputDispatcher.cpp
index 0cc7cfb..fbbb388 100644
--- a/services/inputflinger/dispatcher/InputDispatcher.cpp
+++ b/services/inputflinger/dispatcher/InputDispatcher.cpp
@@ -6700,6 +6700,13 @@
         for (const auto& [displayId, handles] : handlesPerDisplay) {
             setInputWindowsLocked(handles, displayId);
         }
+
+        if (update.vsyncId < mWindowInfosVsyncId) {
+            ALOGE("Received out of order window infos update. Last update vsync id: %" PRId64
+                  ", current update vsync id: %" PRId64,
+                  mWindowInfosVsyncId, update.vsyncId);
+        }
+        mWindowInfosVsyncId = update.vsyncId;
     }
     // Wake up poll loop since it may need to make new input dispatching choices.
     mLooper->wake();
diff --git a/services/inputflinger/dispatcher/InputDispatcher.h b/services/inputflinger/dispatcher/InputDispatcher.h
index 8ca01b7..6b22f2f 100644
--- a/services/inputflinger/dispatcher/InputDispatcher.h
+++ b/services/inputflinger/dispatcher/InputDispatcher.h
@@ -204,6 +204,8 @@
 
     const IdGenerator mIdGenerator;
 
+    int64_t mWindowInfosVsyncId GUARDED_BY(mLock);
+
     // With each iteration, InputDispatcher nominally processes one queued event,
     // a timeout, or a response from an input consumer.
     // This method should only be called on the input dispatcher's own thread.
diff --git a/services/surfaceflinger/DisplayHardware/PowerAdvisor.cpp b/services/surfaceflinger/DisplayHardware/PowerAdvisor.cpp
index 37b68c8..f8b466c 100644
--- a/services/surfaceflinger/DisplayHardware/PowerAdvisor.cpp
+++ b/services/surfaceflinger/DisplayHardware/PowerAdvisor.cpp
@@ -223,7 +223,7 @@
 }
 
 void PowerAdvisor::reportActualWorkDuration() {
-    if (!mBootFinished || !usePowerHintSession()) {
+    if (!mBootFinished || !sUseReportActualDuration || !usePowerHintSession()) {
         ALOGV("Actual work duration power hint cannot be sent, skipping");
         return;
     }
@@ -564,6 +564,9 @@
         base::GetIntProperty<int64_t>("debug.sf.hint_margin_us",
                                       ticks<std::micro>(PowerAdvisor::kDefaultTargetSafetyMargin)));
 
+const bool PowerAdvisor::sUseReportActualDuration =
+        base::GetBoolProperty(std::string("debug.adpf.use_report_actual_duration"), true);
+
 power::PowerHalController& PowerAdvisor::getPowerHal() {
     static std::once_flag halFlag;
     std::call_once(halFlag, [this] { mPowerHal->init(); });
diff --git a/services/surfaceflinger/DisplayHardware/PowerAdvisor.h b/services/surfaceflinger/DisplayHardware/PowerAdvisor.h
index 7a0d426..f0d3fd8 100644
--- a/services/surfaceflinger/DisplayHardware/PowerAdvisor.h
+++ b/services/surfaceflinger/DisplayHardware/PowerAdvisor.h
@@ -269,6 +269,9 @@
     static const Duration sTargetSafetyMargin;
     static constexpr const Duration kDefaultTargetSafetyMargin{1ms};
 
+    // Whether we should send reportActualWorkDuration calls
+    static const bool sUseReportActualDuration;
+
     // How long we expect hwc to run after the present call until it waits for the fence
     static constexpr const Duration kFenceWaitStartDelayValidated{150us};
     static constexpr const Duration kFenceWaitStartDelaySkippedValidate{250us};
diff --git a/services/surfaceflinger/SurfaceFlinger.cpp b/services/surfaceflinger/SurfaceFlinger.cpp
index 2ac1db9..79378be 100644
--- a/services/surfaceflinger/SurfaceFlinger.cpp
+++ b/services/surfaceflinger/SurfaceFlinger.cpp
@@ -2485,7 +2485,10 @@
 
         mPowerAdvisor->setFrameDelay(frameDelay);
         mPowerAdvisor->setTotalFrameTargetWorkDuration(idealSfWorkDuration);
-        mPowerAdvisor->updateTargetWorkDuration(vsyncPeriod);
+
+        const auto& display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get();
+        const Period idealVsyncPeriod = display->getActiveMode().fps.getPeriod();
+        mPowerAdvisor->updateTargetWorkDuration(idealVsyncPeriod);
     }
 
     if (mRefreshRateOverlaySpinner) {