FTL: Add StaticVector<T, N>

FTL is a template library shared by SurfaceFlinger and InputFlinger.

StaticVector is a hybrid of std::array and std::vector, a statically
allocated container with fixed capacity. It will serve as a base for
SmallVector and SmallMap.

Bug: 160012986
Test: ftl_test
Test: Apply ag/12919186 and compare assembly
Change-Id: I821c736f3411e970402faf19d9238b68c056ca93
diff --git a/include/ftl/StaticVector.h b/include/ftl/StaticVector.h
new file mode 100644
index 0000000..b586e91
--- /dev/null
+++ b/include/ftl/StaticVector.h
@@ -0,0 +1,341 @@
+/*
+ * Copyright 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <memory>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+namespace android::ftl {
+
+// Fixed-capacity, statically allocated counterpart of std::vector. Akin to std::array, StaticVector
+// allocates contiguous storage for N elements of type T at compile time, but stores at most (rather
+// than exactly) N elements. Unlike std::array, its default constructor does not require T to have a
+// default constructor, since elements are constructed in-place as the vector grows. Operations that
+// insert an element, such as push_back and emplace, fail when the vector is full. The API otherwise
+// adheres to standard containers, except the unstable_erase operation that does not shift elements,
+// and the replace operation that destructively emplaces.
+//
+// StaticVector<T, 1> is analogous to an iterable std::optional, but StaticVector<T, 0> is an error.
+//
+// Example usage:
+//
+//     ftl::StaticVector<char, 3> vector;
+//     assert(vector.empty());
+//
+//     vector = {'a', 'b'};
+//     assert(vector.size() == 2u);
+//
+//     vector.push_back('c');
+//     assert(vector.full());
+//
+//     assert(!vector.push_back('d'));
+//     assert(vector.size() == 3u);
+//
+//     vector.unstable_erase(vector.begin());
+//     assert(vector == (ftl::StaticVector{'c', 'b'}));
+//
+//     vector.pop_back();
+//     assert(vector.back() == 'c');
+//
+//     const char array[] = "hi";
+//     vector = ftl::StaticVector(array);
+//     assert(vector == (ftl::StaticVector{'h', 'i', '\0'}));
+//
+template <typename T, size_t N>
+class StaticVector {
+    static_assert(N > 0);
+
+    template <typename I>
+    using IsInputIterator = std::is_base_of<std::input_iterator_tag,
+                                            typename std::iterator_traits<I>::iterator_category>;
+
+public:
+    using value_type = T;
+    using size_type = size_t;
+    using difference_type = ptrdiff_t;
+
+    using pointer = value_type*;
+    using reference = value_type&;
+    using iterator = pointer;
+    using reverse_iterator = std::reverse_iterator<iterator>;
+
+    using const_pointer = const value_type*;
+    using const_reference = const value_type&;
+    using const_iterator = const_pointer;
+    using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+
+    // Creates an empty vector.
+    StaticVector() = default;
+
+    // Copies and moves a vector, respectively.
+    StaticVector(const StaticVector& other) : StaticVector(other.begin(), other.end()) {}
+    StaticVector(StaticVector&& other) { swap<Empty>(other); }
+
+    // Copies at most N elements from a smaller convertible vector.
+    template <typename U, size_t M, typename = std::enable_if_t<M <= N>>
+    StaticVector(const StaticVector<U, M>& other) : StaticVector(other.begin(), other.end()) {}
+
+    // Copies at most N elements from an array.
+    template <typename U, size_t M>
+    explicit StaticVector(U (&array)[M]) : StaticVector(std::begin(array), std::end(array)) {}
+
+    // Copies at most N elements from the range [first, last).
+    template <typename Iterator, typename = std::enable_if_t<IsInputIterator<Iterator>{}>>
+    StaticVector(Iterator first, Iterator last)
+          : mSize(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) {
+        std::uninitialized_copy(first, first + mSize, begin());
+    }
+
+    // Constructs at most N elements. The template arguments T and N are inferred using the
+    // deduction guide defined below. Note that T is determined from the first element, and
+    // subsequent elements must have convertible types:
+    //
+    //     ftl::StaticVector vector = {1, 2, 3};
+    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>);
+    //
+    //     const auto copy = "quince"s;
+    //     auto move = "tart"s;
+    //     ftl::StaticVector vector = {copy, std::move(move)};
+    //
+    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>);
+    //
+    template <typename E, typename... Es,
+              typename = std::enable_if_t<std::is_constructible_v<value_type, E>>>
+    StaticVector(E&& element, Es&&... elements)
+          : StaticVector(std::index_sequence<0>{}, std::forward<E>(element),
+                         std::forward<Es>(elements)...) {
+        static_assert(sizeof...(elements) < N, "Too many elements");
+    }
+
+    // Constructs at most N elements. The template arguments T and N are inferred using the
+    // deduction guide defined below. Element types must be convertible to the specified T:
+    //
+    //     ftl::StaticVector vector(std::in_place_type<std::string>, "red", "velvet", "cake");
+    //     static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>);
+    //
+    template <typename... Es>
+    explicit StaticVector(std::in_place_type_t<T>, Es... elements)
+          : StaticVector(std::forward<Es>(elements)...) {}
+
+    ~StaticVector() { std::destroy(begin(), end()); }
+
+    StaticVector& operator=(const StaticVector& other) {
+        StaticVector copy(other);
+        swap(copy);
+        return *this;
+    }
+
+    StaticVector& operator=(StaticVector&& other) {
+        std::destroy(begin(), end());
+        mSize = 0;
+        swap<Empty>(other);
+        return *this;
+    }
+
+    template <typename = void>
+    void swap(StaticVector&);
+
+    size_type max_size() const { return N; }
+    size_type size() const { return mSize; }
+
+    bool empty() const { return size() == 0; }
+    bool full() const { return size() == max_size(); }
+
+    iterator begin() { return std::launder(reinterpret_cast<pointer>(mData)); }
+    const_iterator begin() const { return cbegin(); }
+    const_iterator cbegin() const { return mut().begin(); }
+
+    iterator end() { return begin() + size(); }
+    const_iterator end() const { return cend(); }
+    const_iterator cend() const { return mut().end(); }
+
+    reverse_iterator rbegin() { return std::make_reverse_iterator(end()); }
+    const_reverse_iterator rbegin() const { return crbegin(); }
+    const_reverse_iterator crbegin() const { return mut().rbegin(); }
+
+    reverse_iterator rend() { return std::make_reverse_iterator(begin()); }
+    const_reverse_iterator rend() const { return crend(); }
+    const_reverse_iterator crend() const { return mut().rend(); }
+
+    iterator last() { return end() - 1; }
+    const_iterator last() const { return mut().last(); }
+
+    reference front() { return *begin(); }
+    const_reference front() const { return mut().front(); }
+
+    reference back() { return *last(); }
+    const_reference back() const { return mut().back(); }
+
+    reference operator[](size_type i) { return *(begin() + i); }
+    const_reference operator[](size_type i) const { return mut()[i]; }
+
+    // Replaces an element, and returns an iterator to it. If the vector is full, the element is not
+    // replaced, and the end iterator is returned.
+    template <typename... Args>
+    iterator replace(const_iterator cit, Args&&... args) {
+        if (full()) return end();
+        // Append element, and move into place if not last.
+        emplace_back(std::forward<Args>(args)...);
+        if (cit != last()) unstable_erase(cit);
+        return const_cast<iterator>(cit);
+    }
+
+    // Appends an element, and returns an iterator to it. If the vector is full, the element is not
+    // inserted, and the end iterator is returned.
+    template <typename... Args>
+    iterator emplace_back(Args&&... args) {
+        if (full()) return end();
+        const iterator it = construct_at(end(), std::forward<Args>(args)...);
+        ++mSize;
+        return it;
+    }
+
+    // Erases an element, but does not preserve order. Rather than shifting subsequent elements,
+    // this moves the last element to the slot of the erased element.
+    void unstable_erase(const_iterator it) {
+        std::destroy_at(it);
+        if (it != last()) {
+            // Move last element and destroy its source for destructor side effects.
+            construct_at(it, std::move(back()));
+            std::destroy_at(last());
+        }
+        --mSize;
+    }
+
+    bool push_back(value_type v) {
+        // Two statements for sequence point.
+        const iterator it = emplace_back(std::move(v));
+        return it != end();
+    }
+
+    void pop_back() { unstable_erase(last()); }
+
+private:
+    struct Empty {};
+
+    StaticVector& mut() const { return *const_cast<StaticVector*>(this); }
+
+    // Recursion for variadic constructor.
+    template <size_t I, typename E, typename... Es>
+    StaticVector(std::index_sequence<I>, E&& element, Es&&... elements)
+          : StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) {
+        construct_at(begin() + I, std::forward<E>(element));
+    }
+
+    // Base case for variadic constructor.
+    template <size_t I>
+    explicit StaticVector(std::index_sequence<I>) : mSize(I) {}
+
+    // TODO: Replace with std::construct_at in C++20.
+    template <typename... Args>
+    static pointer construct_at(const_iterator it, Args&&... args) {
+        void* const ptr = const_cast<void*>(static_cast<const void*>(it));
+        return new (ptr) value_type{std::forward<Args>(args)...};
+    }
+
+    size_type mSize = 0;
+    std::aligned_storage_t<sizeof(value_type), alignof(value_type)> mData[N];
+};
+
+// Deduction guide for array constructor.
+template <typename T, size_t N>
+StaticVector(T (&)[N]) -> StaticVector<std::remove_cv_t<T>, N>;
+
+// Deduction guide for variadic constructor.
+template <typename T, typename... Us, typename V = std::decay_t<T>,
+          typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>>
+StaticVector(T&&, Us&&...) -> StaticVector<V, 1 + sizeof...(Us)>;
+
+// Deduction guide for in-place constructor.
+template <typename T, typename... Us>
+StaticVector(std::in_place_type_t<T>, Us&&...) -> StaticVector<T, sizeof...(Us)>;
+
+template <typename T, size_t N>
+template <typename E>
+void StaticVector<T, N>::swap(StaticVector& other) {
+    auto [to, from] = std::make_pair(this, &other);
+    if (from == this) return;
+
+    // Assume this vector has fewer elements, so the excess of the other vector will be moved to it.
+    auto [min, max] = std::make_pair(size(), other.size());
+
+    // No elements to swap if moving into an empty vector.
+    if constexpr (std::is_same_v<E, Empty>) {
+        assert(min == 0);
+    } else {
+        if (min > max) {
+            std::swap(from, to);
+            std::swap(min, max);
+        }
+
+        // Swap elements [0, min).
+        std::swap_ranges(begin(), begin() + min, other.begin());
+
+        // No elements to move if sizes are equal.
+        if (min == max) return;
+    }
+
+    // Move elements [min, max) and destroy their source for destructor side effects.
+    const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max);
+    std::uninitialized_move(first, last, to->begin() + min);
+    std::destroy(first, last);
+
+    std::swap(mSize, other.mSize);
+}
+
+template <typename T, size_t N>
+inline void swap(StaticVector<T, N>& lhs, StaticVector<T, N>& rhs) {
+    lhs.swap(rhs);
+}
+
+// TODO: Replace with operator<=> in C++20.
+template <typename T, size_t N, size_t M>
+inline bool operator==(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
+}
+
+template <typename T, size_t N, size_t M>
+inline bool operator<(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
+}
+
+template <typename T, size_t N, size_t M>
+inline bool operator>(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return rhs < lhs;
+}
+
+template <typename T, size_t N, size_t M>
+inline bool operator!=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return !(lhs == rhs);
+}
+
+template <typename T, size_t N, size_t M>
+inline bool operator>=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return !(lhs < rhs);
+}
+
+template <typename T, size_t N, size_t M>
+inline bool operator<=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
+    return !(rhs < lhs);
+}
+
+} // namespace android::ftl