Parcel: add generic readData and writeData methods.
The parameter type drives Parcel serialization for readData and
writeData; this simplifies calling and allows generic code to be
written for Parcels.
Documented parcel data storage.
Removed duplicated code.
Updated existing interface to call into readData or writeData as needed.
Bulk data transfer speed has been improved: For the existing interface,
benchmarking shows modest 10% improvement in performance for ByteVectors
to a 10x speedup for Int32Vectors by direct reading of properly packed
data into the array.
At this time, the generic readData and writeData methods are private,
used to implement externally facing APIs.
Test: atest aidl_unittests
Test: atest aidl_integration_test
Test: atest binderDriverInterfaceTest
Test: atest binderLibTest
Test: atest binderParcelBenchmark
Test: atest binderParcelTest
Test: atest binderStabilityTest
Bug: 179072375
Change-Id: Ia2e74d4bb0c0622efdd4ec4cf93441199e96101e
diff --git a/libs/binder/Parcel.cpp b/libs/binder/Parcel.cpp
index 8dab98e..8bed621 100644
--- a/libs/binder/Parcel.cpp
+++ b/libs/binder/Parcel.cpp
@@ -769,200 +769,116 @@
return NO_ERROR;
}
-status_t Parcel::writeUtf8AsUtf16(const std::optional<std::string>& str) {
- if (!str) {
- return writeInt32(-1);
- }
- return writeUtf8AsUtf16(*str);
-}
-status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
- if (!str) {
- return writeInt32(-1);
- }
- return writeUtf8AsUtf16(*str);
-}
+status_t Parcel::writeUtf8AsUtf16(const std::optional<std::string>& str) { return writeData(str); }
+status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) { return writeData(str); }
-status_t Parcel::writeByteVectorInternal(const int8_t* data, size_t size) {
- if (size > std::numeric_limits<int32_t>::max()) {
- return BAD_VALUE;
- }
+status_t Parcel::writeString16(const std::optional<String16>& str) { return writeData(str); }
+status_t Parcel::writeString16(const std::unique_ptr<String16>& str) { return writeData(str); }
- status_t status = writeInt32(size);
- if (status != OK) {
- return status;
- }
+status_t Parcel::writeByteVector(const std::vector<int8_t>& val) { return writeData(val); }
+status_t Parcel::writeByteVector(const std::optional<std::vector<int8_t>>& val) { return writeData(val); }
+status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val) { return writeData(val); }
+status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) { return writeData(val); }
+status_t Parcel::writeByteVector(const std::optional<std::vector<uint8_t>>& val) { return writeData(val); }
+status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val){ return writeData(val); }
+status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val) { return writeData(val); }
+status_t Parcel::writeInt32Vector(const std::optional<std::vector<int32_t>>& val) { return writeData(val); }
+status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val) { return writeData(val); }
+status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val) { return writeData(val); }
+status_t Parcel::writeInt64Vector(const std::optional<std::vector<int64_t>>& val) { return writeData(val); }
+status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val) { return writeData(val); }
+status_t Parcel::writeUint64Vector(const std::vector<uint64_t>& val) { return writeData(val); }
+status_t Parcel::writeUint64Vector(const std::optional<std::vector<uint64_t>>& val) { return writeData(val); }
+status_t Parcel::writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>>& val) { return writeData(val); }
+status_t Parcel::writeFloatVector(const std::vector<float>& val) { return writeData(val); }
+status_t Parcel::writeFloatVector(const std::optional<std::vector<float>>& val) { return writeData(val); }
+status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val) { return writeData(val); }
+status_t Parcel::writeDoubleVector(const std::vector<double>& val) { return writeData(val); }
+status_t Parcel::writeDoubleVector(const std::optional<std::vector<double>>& val) { return writeData(val); }
+status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val) { return writeData(val); }
+status_t Parcel::writeBoolVector(const std::vector<bool>& val) { return writeData(val); }
+status_t Parcel::writeBoolVector(const std::optional<std::vector<bool>>& val) { return writeData(val); }
+status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val) { return writeData(val); }
+status_t Parcel::writeCharVector(const std::vector<char16_t>& val) { return writeData(val); }
+status_t Parcel::writeCharVector(const std::optional<std::vector<char16_t>>& val) { return writeData(val); }
+status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val) { return writeData(val); }
- return write(data, size);
-}
-
-status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
- return writeByteVectorInternal(val.data(), val.size());
-}
-
-status_t Parcel::writeByteVector(const std::optional<std::vector<int8_t>>& val)
-{
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(val->data(), val->size());
-}
-
-status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
-{
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(val->data(), val->size());
-}
-
-status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val.data()), val.size());
-}
-
-status_t Parcel::writeByteVector(const std::optional<std::vector<uint8_t>>& val)
-{
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val->data()), val->size());
-}
-
-status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
-{
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val->data()), val->size());
-}
-
-status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
-{
- return writeTypedVector(val, &Parcel::writeInt32);
-}
-
-status_t Parcel::writeInt32Vector(const std::optional<std::vector<int32_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeInt32);
-}
-
-status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeInt32);
-}
-
-status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
-{
- return writeTypedVector(val, &Parcel::writeInt64);
-}
-
-status_t Parcel::writeInt64Vector(const std::optional<std::vector<int64_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeInt64);
-}
-
-status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeInt64);
-}
-
-status_t Parcel::writeUint64Vector(const std::vector<uint64_t>& val)
-{
- return writeTypedVector(val, &Parcel::writeUint64);
-}
-
-status_t Parcel::writeUint64Vector(const std::optional<std::vector<uint64_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeUint64);
-}
-
-status_t Parcel::writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeUint64);
-}
-
-status_t Parcel::writeFloatVector(const std::vector<float>& val)
-{
- return writeTypedVector(val, &Parcel::writeFloat);
-}
-
-status_t Parcel::writeFloatVector(const std::optional<std::vector<float>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeFloat);
-}
-
-status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeFloat);
-}
-
-status_t Parcel::writeDoubleVector(const std::vector<double>& val)
-{
- return writeTypedVector(val, &Parcel::writeDouble);
-}
-
-status_t Parcel::writeDoubleVector(const std::optional<std::vector<double>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeDouble);
-}
-
-status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeDouble);
-}
-
-status_t Parcel::writeBoolVector(const std::vector<bool>& val)
-{
- return writeTypedVector(val, &Parcel::writeBool);
-}
-
-status_t Parcel::writeBoolVector(const std::optional<std::vector<bool>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeBool);
-}
-
-status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeBool);
-}
-
-status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
-{
- return writeTypedVector(val, &Parcel::writeChar);
-}
-
-status_t Parcel::writeCharVector(const std::optional<std::vector<char16_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeChar);
-}
-
-status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeChar);
-}
-
-status_t Parcel::writeString16Vector(const std::vector<String16>& val)
-{
- return writeTypedVector(val, &Parcel::writeString16);
-}
-
+status_t Parcel::writeString16Vector(const std::vector<String16>& val) { return writeData(val); }
status_t Parcel::writeString16Vector(
- const std::optional<std::vector<std::optional<String16>>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeString16);
-}
-
+ const std::optional<std::vector<std::optional<String16>>>& val) { return writeData(val); }
status_t Parcel::writeString16Vector(
- const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeString16);
-}
-
+ const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val) { return writeData(val); }
status_t Parcel::writeUtf8VectorAsUtf16Vector(
- const std::optional<std::vector<std::optional<std::string>>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
-}
-
+ const std::optional<std::vector<std::optional<std::string>>>& val) { return writeData(val); }
status_t Parcel::writeUtf8VectorAsUtf16Vector(
- const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
-}
+ const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) { return writeData(val); }
+status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) { return writeData(val); }
-status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
- return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
-}
+status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) { return writeData(val); }
+status_t Parcel::writeUniqueFileDescriptorVector(const std::optional<std::vector<base::unique_fd>>& val) { return writeData(val); }
+status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) { return writeData(val); }
+
+status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val) { return writeData(val); }
+status_t Parcel::writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>>& val) { return writeData(val); }
+status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val) { return writeData(val); }
+
+status_t Parcel::writeParcelable(const Parcelable& parcelable) { return writeData(parcelable); }
+
+status_t Parcel::readUtf8FromUtf16(std::optional<std::string>* str) const { return readData(str); }
+status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const { return readData(str); }
+
+status_t Parcel::readString16(std::optional<String16>* pArg) const { return readData(pArg); }
+status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const { return readData(pArg); }
+
+status_t Parcel::readByteVector(std::vector<int8_t>* val) const { return readData(val); }
+status_t Parcel::readByteVector(std::vector<uint8_t>* val) const { return readData(val); }
+status_t Parcel::readByteVector(std::optional<std::vector<int8_t>>* val) const { return readData(val); }
+status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const { return readData(val); }
+status_t Parcel::readByteVector(std::optional<std::vector<uint8_t>>* val) const { return readData(val); }
+status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const { return readData(val); }
+status_t Parcel::readInt32Vector(std::optional<std::vector<int32_t>>* val) const { return readData(val); }
+status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const { return readData(val); }
+status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const { return readData(val); }
+status_t Parcel::readInt64Vector(std::optional<std::vector<int64_t>>* val) const { return readData(val); }
+status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const { return readData(val); }
+status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const { return readData(val); }
+status_t Parcel::readUint64Vector(std::optional<std::vector<uint64_t>>* val) const { return readData(val); }
+status_t Parcel::readUint64Vector(std::unique_ptr<std::vector<uint64_t>>* val) const { return readData(val); }
+status_t Parcel::readUint64Vector(std::vector<uint64_t>* val) const { return readData(val); }
+status_t Parcel::readFloatVector(std::optional<std::vector<float>>* val) const { return readData(val); }
+status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const { return readData(val); }
+status_t Parcel::readFloatVector(std::vector<float>* val) const { return readData(val); }
+status_t Parcel::readDoubleVector(std::optional<std::vector<double>>* val) const { return readData(val); }
+status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const { return readData(val); }
+status_t Parcel::readDoubleVector(std::vector<double>* val) const { return readData(val); }
+status_t Parcel::readBoolVector(std::optional<std::vector<bool>>* val) const { return readData(val); }
+status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const { return readData(val); }
+status_t Parcel::readBoolVector(std::vector<bool>* val) const { return readData(val); }
+status_t Parcel::readCharVector(std::optional<std::vector<char16_t>>* val) const { return readData(val); }
+status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const { return readData(val); }
+status_t Parcel::readCharVector(std::vector<char16_t>* val) const { return readData(val); }
+
+status_t Parcel::readString16Vector(
+ std::optional<std::vector<std::optional<String16>>>* val) const { return readData(val); }
+status_t Parcel::readString16Vector(
+ std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const { return readData(val); }
+status_t Parcel::readString16Vector(std::vector<String16>* val) const { return readData(val); }
+status_t Parcel::readUtf8VectorFromUtf16Vector(
+ std::optional<std::vector<std::optional<std::string>>>* val) const { return readData(val); }
+status_t Parcel::readUtf8VectorFromUtf16Vector(
+ std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const { return readData(val); }
+status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const { return readData(val); }
+
+status_t Parcel::readUniqueFileDescriptorVector(std::optional<std::vector<base::unique_fd>>* val) const { return readData(val); }
+status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const { return readData(val); }
+status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const { return readData(val); }
+
+status_t Parcel::readStrongBinderVector(std::optional<std::vector<sp<IBinder>>>* val) const { return readData(val); }
+status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const { return readData(val); }
+status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const { return readData(val); }
+
+status_t Parcel::readParcelable(Parcelable* parcelable) const { return readData(parcelable); }
status_t Parcel::writeInt32(int32_t val)
{
@@ -1091,24 +1007,6 @@
return err;
}
-status_t Parcel::writeString16(const std::optional<String16>& str)
-{
- if (!str) {
- return writeInt32(-1);
- }
-
- return writeString16(*str);
-}
-
-status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
-{
- if (!str) {
- return writeInt32(-1);
- }
-
- return writeString16(*str);
-}
-
status_t Parcel::writeString16(const String16& str)
{
return writeString16(str.string(), str.size());
@@ -1138,32 +1036,6 @@
return flattenBinder(val);
}
-status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
-{
- return writeTypedVector(val, &Parcel::writeStrongBinder);
-}
-
-status_t Parcel::writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
-}
-
-status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
-{
- return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
-}
-
-status_t Parcel::readStrongBinderVector(std::optional<std::vector<sp<IBinder>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
-}
-
-status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
-}
-
-status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
- return readTypedVector(val, &Parcel::readStrongBinder);
-}
status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
if (!parcelable) {
@@ -1173,14 +1045,6 @@
return writeParcelable(*parcelable);
}
-status_t Parcel::writeParcelable(const Parcelable& parcelable) {
- status_t status = writeInt32(1); // parcelable is not null.
- if (status != OK) {
- return status;
- }
- return parcelable.writeToParcel(this);
-}
-
status_t Parcel::writeNativeHandle(const native_handle* handle)
{
if (!handle || handle->version != sizeof(native_handle))
@@ -1251,18 +1115,6 @@
return writeDupFileDescriptor(fd.get());
}
-status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) {
- return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
-}
-
-status_t Parcel::writeUniqueFileDescriptorVector(const std::optional<std::vector<base::unique_fd>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
-}
-
-status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
-}
-
status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
{
if (len > INT32_MAX) {
@@ -1477,31 +1329,6 @@
goto data_sorted;
}
-status_t Parcel::readVectorSizeWithCoarseBoundCheck(int32_t *size) const {
- int32_t requestedSize;
- const status_t status = readInt32(&requestedSize);
- if (status != NO_ERROR) return status;
-
- // We permit negative sizes, which indicate presence of a nullable vector,
- // i.e. a vector embedded in std::optional, std::unique_ptr, or std::shared_ptr.
- if (requestedSize > 0) {
- // Check if there are fewer bytes than vector elements.
- // A lower bound is 1 byte per element, satisfied by some enum and int8_t and uint8_t.
- const size_t availableBytes = dataAvail();
- if (static_cast<size_t>(requestedSize) > availableBytes) {
- // We have a size that is greater than the number of bytes available.
- // On bounds failure we do not 'rewind' position by 4 bytes of the size already read.
- ALOGW("%s: rejecting out of bounds vector size (requestedSize):%d "
- "Parcel{dataAvail:%zu mDataSize:%zu mDataPos:%zu mDataCapacity:%zu}",
- __func__, requestedSize, availableBytes, mDataSize, mDataPos, mDataCapacity);
- return BAD_VALUE;
- }
- }
-
- *size = requestedSize;
- return NO_ERROR;
-}
-
status_t Parcel::read(void* outData, size_t len) const
{
if (len > INT32_MAX) {
@@ -1605,236 +1432,6 @@
return err;
}
-status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- return readByteVectorInternal(val, size);
-}
-
-status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- return readByteVectorInternal(val, size);
-}
-
-status_t Parcel::readByteVector(std::optional<std::vector<int8_t>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (!*val) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null byte vector.
- return OK;
- }
- return readByteVectorInternal(&**val, size);
-}
-
-status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (val->get() == nullptr) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null byte vector.
- return OK;
- }
- return readByteVectorInternal(val->get(), size);
-}
-
-status_t Parcel::readByteVector(std::optional<std::vector<uint8_t>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (!*val) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null byte vector.
- return OK;
- }
- return readByteVectorInternal(&**val, size);
-}
-
-status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (val->get() == nullptr) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null byte vector.
- return OK;
- }
- return readByteVectorInternal(val->get(), size);
-}
-
-status_t Parcel::readInt32Vector(std::optional<std::vector<int32_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readInt32);
-}
-
-status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readInt32);
-}
-
-status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
- return readTypedVector(val, &Parcel::readInt32);
-}
-
-status_t Parcel::readInt64Vector(std::optional<std::vector<int64_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readInt64);
-}
-
-status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readInt64);
-}
-
-status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
- return readTypedVector(val, &Parcel::readInt64);
-}
-
-status_t Parcel::readUint64Vector(std::optional<std::vector<uint64_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUint64);
-}
-
-status_t Parcel::readUint64Vector(std::unique_ptr<std::vector<uint64_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUint64);
-}
-
-status_t Parcel::readUint64Vector(std::vector<uint64_t>* val) const {
- return readTypedVector(val, &Parcel::readUint64);
-}
-
-status_t Parcel::readFloatVector(std::optional<std::vector<float>>* val) const {
- return readNullableTypedVector(val, &Parcel::readFloat);
-}
-
-status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
- return readNullableTypedVector(val, &Parcel::readFloat);
-}
-
-status_t Parcel::readFloatVector(std::vector<float>* val) const {
- return readTypedVector(val, &Parcel::readFloat);
-}
-
-status_t Parcel::readDoubleVector(std::optional<std::vector<double>>* val) const {
- return readNullableTypedVector(val, &Parcel::readDouble);
-}
-
-status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
- return readNullableTypedVector(val, &Parcel::readDouble);
-}
-
-status_t Parcel::readDoubleVector(std::vector<double>* val) const {
- return readTypedVector(val, &Parcel::readDouble);
-}
-
-status_t Parcel::readBoolVector(std::optional<std::vector<bool>>* val) const {
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->emplace();
-
- status = readBoolVector(&**val);
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->reset(new (std::nothrow) std::vector<bool>());
-
- status = readBoolVector(val->get());
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-status_t Parcel::readBoolVector(std::vector<bool>* val) const {
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
-
- if (status != OK) {
- return status;
- }
-
- if (size < 0) {
- return UNEXPECTED_NULL;
- }
-
- val->resize(size);
-
- /* C++ bool handling means a vector of bools isn't necessarily addressable
- * (we might use individual bits)
- */
- bool data;
- for (int32_t i = 0; i < size; ++i) {
- status = readBool(&data);
- (*val)[i] = data;
-
- if (status != OK) {
- return status;
- }
- }
-
- return OK;
-}
-
-status_t Parcel::readCharVector(std::optional<std::vector<char16_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readChar);
-}
-
-status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
- return readNullableTypedVector(val, &Parcel::readChar);
-}
-
-status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
- return readTypedVector(val, &Parcel::readChar);
-}
-
-status_t Parcel::readString16Vector(
- std::optional<std::vector<std::optional<String16>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readString16);
-}
-
-status_t Parcel::readString16Vector(
- std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readString16);
-}
-
-status_t Parcel::readString16Vector(std::vector<String16>* val) const {
- return readTypedVector(val, &Parcel::readString16);
-}
-
-status_t Parcel::readUtf8VectorFromUtf16Vector(
- std::optional<std::vector<std::optional<std::string>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
-}
-
-status_t Parcel::readUtf8VectorFromUtf16Vector(
- std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
-}
-
-status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
- return readTypedVector(val, &Parcel::readUtf8FromUtf16);
-}
-
status_t Parcel::readInt32(int32_t *pArg) const
{
return readAligned(pArg);
@@ -2007,36 +1604,6 @@
return NO_ERROR;
}
-status_t Parcel::readUtf8FromUtf16(std::optional<std::string>* str) const {
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readInt32(&size);
- str->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- str->emplace();
- return readUtf8FromUtf16(&**str);
-}
-
-status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readInt32(&size);
- str->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- str->reset(new (std::nothrow) std::string());
- return readUtf8FromUtf16(str->get());
-}
-
const char* Parcel::readCString() const
{
if (mDataPos < mDataSize) {
@@ -2100,51 +1667,6 @@
return String16();
}
-status_t Parcel::readString16(std::optional<String16>* pArg) const
-{
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readInt32(&size);
- pArg->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- pArg->emplace();
-
- status = readString16(&**pArg);
-
- if (status != OK) {
- pArg->reset();
- }
-
- return status;
-}
-
-status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
-{
- const int32_t start = dataPosition();
- int32_t size;
- status_t status = readInt32(&size);
- pArg->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- pArg->reset(new (std::nothrow) String16());
-
- status = readString16(pArg->get());
-
- if (status != OK) {
- pArg->reset();
- }
-
- return status;
-}
status_t Parcel::readString16(String16* pArg) const
{
@@ -2198,18 +1720,6 @@
return val;
}
-status_t Parcel::readParcelable(Parcelable* parcelable) const {
- int32_t have_parcelable = 0;
- status_t status = readInt32(&have_parcelable);
- if (status != OK) {
- return status;
- }
- if (!have_parcelable) {
- return UNEXPECTED_NULL;
- }
- return parcelable->readFromParcel(this);
-}
-
int32_t Parcel::readExceptionCode() const
{
binder::Status status;
@@ -2328,18 +1838,6 @@
return OK;
}
-status_t Parcel::readUniqueFileDescriptorVector(std::optional<std::vector<base::unique_fd>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
-}
-
-status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const {
- return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
-}
-
-status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const {
- return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
-}
-
status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
{
int32_t blobType;
diff --git a/libs/binder/include/binder/Parcel.h b/libs/binder/include/binder/Parcel.h
index 54c49e4..7b298f5 100644
--- a/libs/binder/include/binder/Parcel.h
+++ b/libs/binder/include/binder/Parcel.h
@@ -190,34 +190,47 @@
// Write an Enum vector with underlying type int8_t.
// Does not use padding; each byte is contiguous.
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::vector<T>& val);
+ status_t writeEnumVector(const std::vector<T>& val)
+ { return writeData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::optional<std::vector<T>>& val);
+ status_t writeEnumVector(const std::optional<std::vector<T>>& val)
+ { return writeData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::unique_ptr<std::vector<T>>& val) __attribute__((deprecated("use std::optional version instead")));
+ status_t writeEnumVector(const std::unique_ptr<std::vector<T>>& val) __attribute__((deprecated("use std::optional version instead")))
+ { return writeData(val); }
// Write an Enum vector with underlying type != int8_t.
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::vector<T>& val);
+ status_t writeEnumVector(const std::vector<T>& val)
+ { return writeData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::optional<std::vector<T>>& val);
+ status_t writeEnumVector(const std::optional<std::vector<T>>& val)
+ { return writeData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t writeEnumVector(const std::unique_ptr<std::vector<T>>& val) __attribute__((deprecated("use std::optional version instead")));
+ status_t writeEnumVector(const std::unique_ptr<std::vector<T>>& val) __attribute__((deprecated("use std::optional version instead")))
+ { return writeData(val); }
template<typename T>
- status_t writeParcelableVector(const std::optional<std::vector<std::optional<T>>>& val);
+ status_t writeParcelableVector(const std::optional<std::vector<std::optional<T>>>& val)
+ { return writeData(val); }
template<typename T>
- status_t writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val) __attribute__((deprecated("use std::optional version instead")));
+ status_t writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val) __attribute__((deprecated("use std::optional version instead")))
+ { return writeData(val); }
template<typename T>
- status_t writeParcelableVector(const std::shared_ptr<std::vector<std::unique_ptr<T>>>& val) __attribute__((deprecated("use std::optional version instead")));
+ status_t writeParcelableVector(const std::shared_ptr<std::vector<std::unique_ptr<T>>>& val) __attribute__((deprecated("use std::optional version instead")))
+ { return writeData(val); }
template<typename T>
- status_t writeParcelableVector(const std::shared_ptr<std::vector<std::optional<T>>>& val);
+ status_t writeParcelableVector(const std::shared_ptr<std::vector<std::optional<T>>>& val)
+ { return writeData(val); }
template<typename T>
- status_t writeParcelableVector(const std::vector<T>& val);
+ status_t writeParcelableVector(const std::vector<T>& val)
+ { return writeData(val); }
template<typename T>
- status_t writeNullableParcelable(const std::optional<T>& parcelable);
+ status_t writeNullableParcelable(const std::optional<T>& parcelable)
+ { return writeData(parcelable); }
template<typename T>
- status_t writeNullableParcelable(const std::unique_ptr<T>& parcelable) __attribute__((deprecated("use std::optional version instead")));
+ status_t writeNullableParcelable(const std::unique_ptr<T>& parcelable) __attribute__((deprecated("use std::optional version instead")))
+ { return writeData(parcelable); }
status_t writeParcelable(const Parcelable& parcelable);
@@ -335,35 +348,48 @@
// Read an Enum vector with underlying type int8_t.
// Does not use padding; each byte is contiguous.
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::vector<T>* val) const;
+ status_t readEnumVector(std::vector<T>* val) const
+ { return readData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::unique_ptr<std::vector<T>>* val) const __attribute__((deprecated("use std::optional version instead")));
+ status_t readEnumVector(std::unique_ptr<std::vector<T>>* val) const __attribute__((deprecated("use std::optional version instead")))
+ { return readData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::optional<std::vector<T>>* val) const;
+ status_t readEnumVector(std::optional<std::vector<T>>* val) const
+ { return readData(val); }
// Read an Enum vector with underlying type != int8_t.
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::vector<T>* val) const;
+ status_t readEnumVector(std::vector<T>* val) const
+ { return readData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::unique_ptr<std::vector<T>>* val) const __attribute__((deprecated("use std::optional version instead")));
+ status_t readEnumVector(std::unique_ptr<std::vector<T>>* val) const __attribute__((deprecated("use std::optional version instead")))
+ { return readData(val); }
template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool> = 0>
- status_t readEnumVector(std::optional<std::vector<T>>* val) const;
+ status_t readEnumVector(std::optional<std::vector<T>>* val) const
+ { return readData(val); }
template<typename T>
status_t readParcelableVector(
- std::optional<std::vector<std::optional<T>>>* val) const;
+ std::optional<std::vector<std::optional<T>>>* val) const
+ { return readData(val); }
template<typename T>
status_t readParcelableVector(
- std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const __attribute__((deprecated("use std::optional version instead")));
+ std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const __attribute__((deprecated("use std::optional version instead")))
+ { return readData(val); }
template<typename T>
- status_t readParcelableVector(std::vector<T>* val) const;
+ status_t readParcelableVector(std::vector<T>* val) const
+ { return readData(val); }
status_t readParcelable(Parcelable* parcelable) const;
template<typename T>
- status_t readParcelable(std::optional<T>* parcelable) const;
+ status_t readParcelable(std::optional<T>* parcelable) const
+ { return readData(parcelable); }
template<typename T>
- status_t readParcelable(std::unique_ptr<T>* parcelable) const __attribute__((deprecated("use std::optional version instead")));
+ status_t readParcelable(std::unique_ptr<T>* parcelable) const __attribute__((deprecated("use std::optional version instead")))
+ { return readData(parcelable); }
+ // If strong binder would be nullptr, readStrongBinder() returns an error.
+ // TODO: T must be derived from IInterface, fix for clarity.
template<typename T>
status_t readStrongBinder(sp<T>* val) const;
@@ -418,20 +444,13 @@
template<typename T>
status_t read(LightFlattenable<T>& val) const;
+ // resizeOutVector is used to resize AIDL out vector parameters.
template<typename T>
status_t resizeOutVector(std::vector<T>* val) const;
template<typename T>
status_t resizeOutVector(std::optional<std::vector<T>>* val) const;
template<typename T>
status_t resizeOutVector(std::unique_ptr<std::vector<T>>* val) const __attribute__((deprecated("use std::optional version instead")));
- template<typename T>
- status_t reserveOutVector(std::vector<T>* val, size_t* size) const;
- template<typename T>
- status_t reserveOutVector(std::optional<std::vector<T>>* val,
- size_t* size) const;
- template<typename T>
- status_t reserveOutVector(std::unique_ptr<std::vector<T>>* val,
- size_t* size) const __attribute__((deprecated("use std::optional version instead")));
// Like Parcel.java's readExceptionCode(). Reads the first int32
// off of a Parcel's header, returning 0 or the negative error
@@ -518,10 +537,6 @@
void scanForFds() const;
status_t validateReadData(size_t len) const;
- // Reads an int32 size and does a coarse bounds check against the number
- // of available bytes in the Parcel.
- status_t readVectorSizeWithCoarseBoundCheck(int32_t *size) const;
-
void updateWorkSourceRequestHeaderPosition() const;
status_t finishFlattenBinder(const sp<IBinder>& binder);
@@ -540,53 +555,544 @@
status_t writeRawNullableParcelable(const Parcelable*
parcelable);
- template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int32_t>, bool> = 0>
- status_t writeEnum(const T& val);
- template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int64_t>, bool> = 0>
- status_t writeEnum(const T& val);
+ //-----------------------------------------------------------------------------
+ // Generic type read and write methods for Parcel:
+ //
+ // readData(T *value) will read a value from the Parcel.
+ // writeData(const T& value) will write a value to the Parcel.
+ //
+ // Our approach to parceling is based on two overloaded functions
+ // readData() and writeData() that generate parceling code for an
+ // object automatically based on its type. The code from templates are generated at
+ // compile time (if constexpr), and decomposes an object through a call graph matching
+ // recursive descent of the template typename.
+ //
+ // This approach unifies handling of complex objects,
+ // resulting in fewer lines of code, greater consistency,
+ // extensibility to nested types, efficiency (decisions made at compile time),
+ // and better code maintainability and optimization.
+ //
+ // Design decision: Incorporate the read and write code into Parcel rather than
+ // as a non-intrusive serializer that emits a byte stream, as we have
+ // active objects, alignment, legacy code, and historical idiosyncrasies.
+ //
+ // --- Overview
+ //
+ // Parceling is a way of serializing objects into a sequence of bytes for communication
+ // between processes, as part of marshaling data for remote procedure calls.
+ //
+ // The Parcel instance contains objects serialized as bytes, such as the following:
+ //
+ // 1) Ordinary primitive data such as int, float.
+ // 2) Established structured data such as String16, std::string.
+ // 3) Parcelables, which are C++ objects that derive from Parcelable (and thus have a
+ // readFromParcel and writeToParcel method). (Similar for Java)
+ // 4) A std::vector<> of such data.
+ // 5) Nullable objects contained in std::optional, std::unique_ptr, or std::shared_ptr.
+ //
+ // And active objects from the Android ecosystem such as:
+ // 6) File descriptors, base::unique_fd (kernel object handles)
+ // 7) Binder objects, sp<IBinder> (active Android RPC handles)
+ //
+ // Objects from (1) through (5) serialize into the mData buffer.
+ // Active objects (6) and (7) serialize into both mData and mObjects buffers.
+ //
+ // --- Data layout details
+ //
+ // Data is read or written to the parcel by recursively decomposing the type of the parameter
+ // type T through readData() and writeData() methods.
+ //
+ // We focus on writeData() here in our explanation of the data layout.
+ //
+ // 1) Alignment
+ // Implementation detail: Regardless of the parameter type, writeData() calls are designed
+ // to finish at a multiple of 4 bytes, the default alignment of the Parcel.
+ //
+ // Writes of single uint8_t, int8_t, enums based on types of size 1, char16_t, etc
+ // will result in 4 bytes being written. The data is widened to int32 and then written;
+ // hence the position of the nonzero bytes depend on the native endianness of the CPU.
+ //
+ // Writes of primitive values with 8 byte size, double, int64_t, uint64_t,
+ // are stored with 4 byte alignment. The ARM and x86/x64 permit unaligned reads
+ // and writes (albeit with potential latency/throughput penalty) which may or may
+ // not be observable unless the process is IO bound.
+ //
+ // 2) Parcelables
+ // Parcelables are detected by the type's base class, and implemented through calling
+ // into the Parcelable type's readFromParcel() or writeToParcel() methods.
+ // Historically, due to null object detection, a (int32_t) 1 is prepended to the data written.
+ // Parcelables must have a default constructor (i.e. one that takes no arguments).
+ //
+ // 3) Arrays
+ // Arrays of uint8_t and int8_t, and enums based on size 1 are written as
+ // a contiguous packed byte stream. Hidden zero padding is applied at the end of the byte
+ // stream to make a multiple of 4 bytes (and prevent info leakage when writing).
+ //
+ // All other array writes can be conceptually thought of as recursively calling
+ // writeData on the individual elements (though may be implemented differently for speed).
+ // As discussed in (1), alignment rules are therefore applied for each element
+ // write (not as an aggregate whole), so the wire representation of data can be
+ // substantially larger.
+ //
+ // Historical Note:
+ // Because of element-wise alignment, CharVector and BoolVector are expanded
+ // element-wise into integers even though they could have been optimized to be packed
+ // just like uint8_t, int8_t (size 1 data).
+ //
+ // 3.1) Arrays accessed by the std::vector type. This is the default for AIDL.
+ //
+ // 4) Nullables
+ // std::optional, std::unique_ptr, std::shared_ptr are all parceled identically
+ // (i.e. result in identical byte layout).
+ // The target of the std::optional, std::unique_ptr, or std::shared_ptr
+ // can either be a std::vector, String16, std::string, or a Parcelable.
+ //
+ // Detection of null relies on peeking the first int32 data and checking if the
+ // the peeked value is considered invalid for the object:
+ // (-1 for vectors, String16, std::string) (0 for Parcelables). If the peeked value
+ // is invalid, then a null is returned.
+ //
+ // Application Note: When to use each nullable type:
+ //
+ // std::optional: Embeds the object T by value rather than creating a new instance
+ // by managed pointer as std::unique_ptr or std::shared_ptr. This will save a malloc
+ // when creating an optional instance.
+ //
+ // Use of std::optionals by value can result in copies of the underlying value stored in it,
+ // so a std::move may be used to move in and move out (for example) a vector value into
+ // the std::optional or for the std::optional itself.
+ //
+ // std::unique_ptr, std::shared_ptr: These are preferred when the lifetime of the object is
+ // already managed by the application. This reduces unnecessary copying of data
+ // especially when the calls are local in-proc (rather than via binder rpc).
+ //
+ // 5) StrongBinder (sp<IBinder>)
+ // StrongBinder objects are written regardless of null. When read, null StrongBinder values
+ // will be interpreted as UNKNOWN_ERROR if the type is a single argument <sp<T>>
+ // or in a vector argument <std::vector<sp<T>>. However, they will be read without an error
+ // if present in a std::optional, std::unique_ptr, or std::shared_ptr vector, e.g.
+ // <std::optional<std::vector<sp<T>>>.
+ //
+ // See AIDL annotation @Nullable, readStrongBinder(), and readNullableStrongBinder().
+ //
+ // Historical Note: writing a vector of StrongBinder objects <std::vector<sp<T>>
+ // containing a null will not cause an error. However reading such a vector will cause
+ // an error _and_ early termination of the read.
- template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int32_t>, bool> = 0>
- status_t readEnum(T* pArg) const;
- template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int64_t>, bool> = 0>
- status_t readEnum(T* pArg) const;
+ // --- Examples
+ //
+ // Using recursive parceling, we can parcel complex data types so long
+ // as they obey the rules described above.
+ //
+ // Example #1
+ // Parceling of a 3D vector
+ //
+ // std::vector<std::vector<std::vector<int32_t>>> v1 {
+ // { {1}, {2, 3}, {4} },
+ // {},
+ // { {10}, {20}, {30, 40} },
+ // };
+ // Parcel p1;
+ // p1.writeData(v1);
+ // decltype(v1) v2;
+ // p1.setDataPosition(0);
+ // p1.readData(&v2);
+ // ASSERT_EQ(v1, v2);
+ //
+ // Example #2
+ // Parceling of mixed shared pointers
+ //
+ // Parcel p1;
+ // auto sp1 = std::make_shared<std::vector<std::shared_ptr<std::vector<int>>>>(3);
+ // (*sp1)[2] = std::make_shared<std::vector<int>>(3);
+ // (*(*sp1)[2])[2] = 2;
+ // p1.writeData(sp1);
+ // decltype(sp1) sp2;
+ // p1.setDataPosition(0);
+ // p1.readData(&sp2);
+ // ASSERT_EQ((*sp1)[0], (*sp2)[0]); // nullptr
+ // ASSERT_EQ((*sp1)[1], (*sp2)[1]); // nullptr
+ // ASSERT_EQ(*(*sp1)[2], *(*sp2)[2]); // { 0, 0, 2}
- status_t writeByteVectorInternal(const int8_t* data, size_t size);
- template<typename T>
- status_t readByteVectorInternal(std::vector<T>* val, size_t size) const;
+ // --- Helper Methods
+ // TODO: move this to a utils header.
+ //
+ // Determine if a type is a specialization of a templated type
+ // Example: is_specialization_v<T, std::vector>
- template<typename T, typename U>
- status_t unsafeReadTypedVector(std::vector<T>* val,
- status_t(Parcel::*read_func)(U*) const) const;
- template<typename T>
- status_t readNullableTypedVector(std::optional<std::vector<T>>* val,
- status_t(Parcel::*read_func)(T*) const) const;
- template<typename T>
- status_t readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
- status_t(Parcel::*read_func)(T*) const) const __attribute__((deprecated("use std::optional version instead")));
- template<typename T>
- status_t readTypedVector(std::vector<T>* val,
- status_t(Parcel::*read_func)(T*) const) const;
- template<typename T, typename U>
- status_t unsafeWriteTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(U));
- template<typename T>
- status_t writeNullableTypedVector(const std::optional<std::vector<T>>& val,
- status_t(Parcel::*write_func)(const T&));
- template<typename T>
- status_t writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
- status_t(Parcel::*write_func)(const T&)) __attribute__((deprecated("use std::optional version instead")));
- template<typename T>
- status_t writeNullableTypedVector(const std::optional<std::vector<T>>& val,
- status_t(Parcel::*write_func)(T));
- template<typename T>
- status_t writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
- status_t(Parcel::*write_func)(T)) __attribute__((deprecated("use std::optional version instead")));
- template<typename T>
- status_t writeTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(const T&));
- template<typename T>
- status_t writeTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(T));
+ template <typename Test, template <typename...> class Ref>
+ struct is_specialization : std::false_type {};
+
+ template <template <typename...> class Ref, typename... Args>
+ struct is_specialization<Ref<Args...>, Ref>: std::true_type {};
+
+ template <typename Test, template <typename...> class Ref>
+ static inline constexpr bool is_specialization_v = is_specialization<Test, Ref>::value;
+
+ // Get the first template type from a container, the T from MyClass<T, ...>.
+ template<typename T> struct first_template_type;
+
+ template <template <typename ...> class V, typename T, typename... Args>
+ struct first_template_type<V<T, Args...>> {
+ using type_t = T;
+ };
+
+ template <typename T>
+ using first_template_type_t = typename first_template_type<T>::type_t;
+
+ // For static assert(false) we need a template version to avoid early failure.
+ template <typename T>
+ static inline constexpr bool dependent_false_v = false;
+
+ // primitive types that we consider packed and trivially copyable as an array
+ template <typename T>
+ static inline constexpr bool is_pointer_equivalent_array_v =
+ std::is_same_v<T, int8_t>
+ || std::is_same_v<T, uint8_t>
+ // We could support int16_t and uint16_t, but those aren't currently AIDL types.
+ || std::is_same_v<T, int32_t>
+ || std::is_same_v<T, uint32_t>
+ || std::is_same_v<T, float>
+ // are unaligned reads and write support is assumed.
+ || std::is_same_v<T, uint64_t>
+ || std::is_same_v<T, int64_t>
+ || std::is_same_v<T, double>
+ || (std::is_enum_v<T> && (sizeof(T) == 1 || sizeof(T) == 4)); // size check not type
+
+ // allowed "nullable" types
+ // These are nonintrusive containers std::optional, std::unique_ptr, std::shared_ptr.
+ template <typename T>
+ static inline constexpr bool is_parcel_nullable_type_v =
+ is_specialization_v<T, std::optional>
+ || is_specialization_v<T, std::unique_ptr>
+ || is_specialization_v<T, std::shared_ptr>;
+
+ // special int32 value to indicate NonNull or Null parcelables
+ // This is fixed to be only 0 or 1 by contract, do not change.
+ static constexpr int32_t kNonNullParcelableFlag = 1;
+ static constexpr int32_t kNullParcelableFlag = 0;
+
+ // special int32 size representing a null vector, when applicable in Nullable data.
+ // This fixed as -1 by contract, do not change.
+ static constexpr int32_t kNullVectorSize = -1;
+
+ // --- readData and writeData methods.
+ // We choose a mixture of function and template overloads to improve code readability.
+ // TODO: Consider C++20 concepts when they become available.
+
+ // writeData function overloads.
+ // Implementation detail: Function overloading improves code readability over
+ // template overloading, but prevents writeData<T> from being used for those types.
+
+ status_t writeData(bool t) {
+ return writeBool(t); // this writes as int32_t
+ }
+
+ status_t writeData(int8_t t) {
+ return writeByte(t); // this writes as int32_t
+ }
+
+ status_t writeData(uint8_t t) {
+ return writeByte(static_cast<int8_t>(t)); // this writes as int32_t
+ }
+
+ status_t writeData(char16_t t) {
+ return writeChar(t); // this writes as int32_t
+ }
+
+ status_t writeData(int32_t t) {
+ return writeInt32(t);
+ }
+
+ status_t writeData(uint32_t t) {
+ return writeUint32(t);
+ }
+
+ status_t writeData(int64_t t) {
+ return writeInt64(t);
+ }
+
+ status_t writeData(uint64_t t) {
+ return writeUint64(t);
+ }
+
+ status_t writeData(float t) {
+ return writeFloat(t);
+ }
+
+ status_t writeData(double t) {
+ return writeDouble(t);
+ }
+
+ status_t writeData(const String16& t) {
+ return writeString16(t);
+ }
+
+ status_t writeData(const std::string& t) {
+ return writeUtf8AsUtf16(t);
+ }
+
+ status_t writeData(const base::unique_fd& t) {
+ return writeUniqueFileDescriptor(t);
+ }
+
+ status_t writeData(const Parcelable& t) { // std::is_base_of_v<Parcelable, T>
+ // implemented here. writeParcelable() calls this.
+ status_t status = writeData(static_cast<int32_t>(kNonNullParcelableFlag));
+ if (status != OK) return status;
+ return t.writeToParcel(this);
+ }
+
+ // writeData<T> template overloads.
+ // Written such that the first template type parameter is the complete type
+ // of the first function parameter.
+ template <typename T,
+ typename std::enable_if_t<std::is_enum_v<T>, bool> = true>
+ status_t writeData(const T& t) {
+ // implemented here. writeEnum() calls this.
+ using UT = std::underlying_type_t<T>;
+ return writeData(static_cast<UT>(t)); // recurse
+ }
+
+ template <typename T,
+ typename std::enable_if_t<is_specialization_v<T, sp>, bool> = true>
+ status_t writeData(const T& t) {
+ return writeStrongBinder(t);
+ }
+
+ // std::optional, std::unique_ptr, std::shared_ptr special case.
+ template <typename CT,
+ typename std::enable_if_t<is_parcel_nullable_type_v<CT>, bool> = true>
+ status_t writeData(const CT& c) {
+ using T = first_template_type_t<CT>; // The T in CT == C<T, ...>
+ if constexpr (is_specialization_v<T, std::vector>
+ || std::is_same_v<T, String16>
+ || std::is_same_v<T, std::string>) {
+ if (!c) return writeData(static_cast<int32_t>(kNullVectorSize));
+ } else if constexpr (std::is_base_of_v<Parcelable, T>) {
+ if (!c) return writeData(static_cast<int32_t>(kNullParcelableFlag));
+ } else /* constexpr */ { // could define this, but raise as error.
+ static_assert(dependent_false_v<CT>);
+ }
+ return writeData(*c);
+ }
+
+ template <typename CT,
+ typename std::enable_if_t<is_specialization_v<CT, std::vector>, bool> = true>
+ status_t writeData(const CT& c) {
+ using T = first_template_type_t<CT>; // The T in CT == C<T, ...>
+ if (c.size() > std::numeric_limits<int32_t>::max()) return BAD_VALUE;
+ const auto size = static_cast<int32_t>(c.size());
+ writeData(size);
+ if constexpr (is_pointer_equivalent_array_v<T>) {
+ constexpr size_t limit = std::numeric_limits<size_t>::max() / sizeof(T);
+ if (c.size() > limit) return BAD_VALUE;
+ // is_pointer_equivalent types do not have gaps which could leak info,
+ // which is only a concern when writing through binder.
+
+ // TODO: Padding of the write is suboptimal when the length of the
+ // data is not a multiple of 4. Consider improving the write() method.
+ return write(c.data(), c.size() * sizeof(T));
+ } else if constexpr (std::is_same_v<T, bool>
+ || std::is_same_v<T, char16_t>) {
+ // reserve data space to write to
+ auto data = reinterpret_cast<int32_t*>(writeInplace(c.size() * sizeof(int32_t)));
+ if (data == nullptr) return BAD_VALUE;
+ for (const auto t: c) {
+ *data++ = static_cast<int32_t>(t);
+ }
+ } else /* constexpr */ {
+ for (const auto &t : c) {
+ const status_t status = writeData(t);
+ if (status != OK) return status;
+ }
+ }
+ return OK;
+ }
+
+ // readData function overloads.
+ // Implementation detail: Function overloading improves code readability over
+ // template overloading, but prevents readData<T> from being used for those types.
+
+ status_t readData(bool* t) const {
+ return readBool(t); // this reads as int32_t
+ }
+
+ status_t readData(int8_t* t) const {
+ return readByte(t); // this reads as int32_t
+ }
+
+ status_t readData(uint8_t* t) const {
+ return readByte(reinterpret_cast<int8_t*>(t)); // NOTE: this reads as int32_t
+ }
+
+ status_t readData(char16_t* t) const {
+ return readChar(t); // this reads as int32_t
+ }
+
+ status_t readData(int32_t* t) const {
+ return readInt32(t);
+ }
+
+ status_t readData(uint32_t* t) const {
+ return readUint32(t);
+ }
+
+ status_t readData(int64_t* t) const {
+ return readInt64(t);
+ }
+
+ status_t readData(uint64_t* t) const {
+ return readUint64(t);
+ }
+
+ status_t readData(float* t) const {
+ return readFloat(t);
+ }
+
+ status_t readData(double* t) const {
+ return readDouble(t);
+ }
+
+ status_t readData(String16* t) const {
+ return readString16(t);
+ }
+
+ status_t readData(std::string* t) const {
+ return readUtf8FromUtf16(t);
+ }
+
+ status_t readData(base::unique_fd* t) const {
+ return readUniqueFileDescriptor(t);
+ }
+
+ status_t readData(Parcelable* t) const { // std::is_base_of_v<Parcelable, T>
+ // implemented here. readParcelable() calls this.
+ int32_t present;
+ status_t status = readData(&present);
+ if (status != OK) return status;
+ if (present != kNonNullParcelableFlag) return UNEXPECTED_NULL;
+ return t->readFromParcel(this);
+ }
+
+ // readData<T> template overloads.
+ // Written such that the first template type parameter is the complete type
+ // of the first function parameter.
+
+ template <typename T,
+ typename std::enable_if_t<std::is_enum_v<T>, bool> = true>
+ status_t readData(T* t) const {
+ // implemented here. readEnum() calls this.
+ using UT = std::underlying_type_t<T>;
+ return readData(reinterpret_cast<UT*>(t));
+ }
+
+ template <typename T,
+ typename std::enable_if_t<is_specialization_v<T, sp>, bool> = true>
+ status_t readData(T* t) const {
+ return readStrongBinder(t); // Note: on null, returns failure
+ }
+
+
+ template <typename CT,
+ typename std::enable_if_t<is_parcel_nullable_type_v<CT>, bool> = true>
+ status_t readData(CT* c) const {
+ using T = first_template_type_t<CT>; // The T in CT == C<T, ...>
+ const size_t startPos = dataPosition();
+ int32_t peek;
+ status_t status = readData(&peek);
+ if (status != OK) return status;
+ if constexpr (is_specialization_v<T, std::vector>
+ || std::is_same_v<T, String16>
+ || std::is_same_v<T, std::string>) {
+ if (peek == kNullVectorSize) {
+ c->reset();
+ return OK;
+ }
+ } else if constexpr (std::is_base_of_v<Parcelable, T>) {
+ if (peek == kNullParcelableFlag) {
+ c->reset();
+ return OK;
+ }
+ } else /* constexpr */ { // could define this, but raise as error.
+ static_assert(dependent_false_v<CT>);
+ }
+ // create a new object.
+ if constexpr (is_specialization_v<CT, std::optional>) {
+ c->emplace();
+ } else /* constexpr */ {
+ T* const t = new (std::nothrow) T; // contents read from Parcel below.
+ if (t == nullptr) return NO_MEMORY;
+ c->reset(t);
+ }
+ // rewind data ptr to reread (this is pretty quick), otherwise we could
+ // pass an optional argument to readData to indicate a peeked value.
+ setDataPosition(startPos);
+ if constexpr (is_specialization_v<T, std::vector>) {
+ return readData(&**c, READ_FLAG_SP_NULLABLE); // nullable sp<> allowed now
+ } else {
+ return readData(&**c);
+ }
+ }
+
+ // std::vector special case, incorporating flags whether the vector
+ // accepts nullable sp<> to be read.
+ enum ReadFlags {
+ READ_FLAG_NONE = 0,
+ READ_FLAG_SP_NULLABLE = 1 << 0,
+ };
+
+ template <typename CT,
+ typename std::enable_if_t<is_specialization_v<CT, std::vector>, bool> = true>
+ status_t readData(CT* c, ReadFlags readFlags = READ_FLAG_NONE) const {
+ using T = first_template_type_t<CT>; // The T in CT == C<T, ...>
+ int32_t size;
+ status_t status = readInt32(&size);
+ if (status != OK) return status;
+ if (size < 0) return UNEXPECTED_NULL;
+ const size_t availableBytes = dataAvail(); // coarse bound on vector size.
+ if (static_cast<size_t>(size) > availableBytes) return BAD_VALUE;
+ c->clear(); // must clear before resizing/reserving otherwise move ctors may be called.
+ if constexpr (is_pointer_equivalent_array_v<T>) {
+ // could consider POD without gaps and alignment of 4.
+ auto data = reinterpret_cast<const T*>(
+ readInplace(static_cast<size_t>(size) * sizeof(T)));
+ if (data == nullptr) return BAD_VALUE;
+ c->insert(c->begin(), data, data + size); // insert should do a reserve().
+ } else if constexpr (std::is_same_v<T, bool>
+ || std::is_same_v<T, char16_t>) {
+ c->reserve(size); // avoids default initialization
+ auto data = reinterpret_cast<const int32_t*>(
+ readInplace(static_cast<size_t>(size) * sizeof(int32_t)));
+ if (data == nullptr) return BAD_VALUE;
+ for (int32_t i = 0; i < size; ++i) {
+ c->emplace_back(static_cast<T>(*data++));
+ }
+ } else if constexpr (is_specialization_v<T, sp>) {
+ c->resize(size); // calls ctor
+ if (readFlags & READ_FLAG_SP_NULLABLE) {
+ for (auto &t : *c) {
+ status = readNullableStrongBinder(&t); // allow nullable
+ if (status != OK) return status;
+ }
+ } else {
+ for (auto &t : *c) {
+ status = readStrongBinder(&t);
+ if (status != OK) return status;
+ }
+ }
+ } else /* constexpr */ {
+ c->resize(size); // calls ctor
+ for (auto &t : *c) {
+ status = readData(&t);
+ if (status != OK) return status;
+ }
+ }
+ return OK;
+ }
+
+ //-----------------------------------------------------------------------------
+ private:
status_t mError;
uint8_t* mData;
@@ -792,7 +1298,6 @@
template<typename T>
status_t Parcel::resizeOutVector(std::vector<T>* val) const {
int32_t size;
- // used for allocating 'out' vector args, do not use readVectorSizeWithCoarseBoundCheck() here
status_t err = readInt32(&size);
if (err != NO_ERROR) {
return err;
@@ -808,7 +1313,6 @@
template<typename T>
status_t Parcel::resizeOutVector(std::optional<std::vector<T>>* val) const {
int32_t size;
- // used for allocating 'out' vector args, do not use readVectorSizeWithCoarseBoundCheck() here
status_t err = readInt32(&size);
if (err != NO_ERROR) {
return err;
@@ -825,7 +1329,6 @@
template<typename T>
status_t Parcel::resizeOutVector(std::unique_ptr<std::vector<T>>* val) const {
int32_t size;
- // used for allocating 'out' vector args, do not use readVectorSizeWithCoarseBoundCheck() here
status_t err = readInt32(&size);
if (err != NO_ERROR) {
return err;
@@ -840,61 +1343,6 @@
}
template<typename T>
-status_t Parcel::reserveOutVector(std::vector<T>* val, size_t* size) const {
- int32_t read_size;
- status_t err = readVectorSizeWithCoarseBoundCheck(&read_size);
- if (err != NO_ERROR) {
- return err;
- }
-
- if (read_size < 0) {
- return UNEXPECTED_NULL;
- }
- *size = static_cast<size_t>(read_size);
- val->reserve(*size);
- return OK;
-}
-
-template<typename T>
-status_t Parcel::reserveOutVector(std::optional<std::vector<T>>* val, size_t* size) const {
- int32_t read_size;
- status_t err = readVectorSizeWithCoarseBoundCheck(&read_size);
- if (err != NO_ERROR) {
- return err;
- }
-
- if (read_size >= 0) {
- *size = static_cast<size_t>(read_size);
- val->emplace();
- (*val)->reserve(*size);
- } else {
- val->reset();
- }
-
- return OK;
-}
-
-template<typename T>
-status_t Parcel::reserveOutVector(std::unique_ptr<std::vector<T>>* val,
- size_t* size) const {
- int32_t read_size;
- status_t err = readVectorSizeWithCoarseBoundCheck(&read_size);
- if (err != NO_ERROR) {
- return err;
- }
-
- if (read_size >= 0) {
- *size = static_cast<size_t>(read_size);
- val->reset(new std::vector<T>());
- (*val)->reserve(*size);
- } else {
- val->reset();
- }
-
- return OK;
-}
-
-template<typename T>
status_t Parcel::readStrongBinder(sp<T>* val) const {
sp<IBinder> tmp;
status_t ret = readStrongBinder(&tmp);
@@ -926,422 +1374,6 @@
return ret;
}
-template<typename T, typename U>
-status_t Parcel::unsafeReadTypedVector(
- std::vector<T>* val,
- status_t(Parcel::*read_func)(U*) const) const {
- int32_t size;
- status_t status = this->readVectorSizeWithCoarseBoundCheck(&size);
-
- if (status != OK) {
- return status;
- }
-
- if (size < 0) {
- return UNEXPECTED_NULL;
- }
-
- if (val->max_size() < static_cast<size_t>(size)) {
- return NO_MEMORY;
- }
-
- val->resize(static_cast<size_t>(size));
-
- if (val->size() < static_cast<size_t>(size)) {
- return NO_MEMORY;
- }
-
- for (auto& v: *val) {
- status = (this->*read_func)(&v);
-
- if (status != OK) {
- return status;
- }
- }
-
- return OK;
-}
-
-template<typename T>
-status_t Parcel::readTypedVector(std::vector<T>* val,
- status_t(Parcel::*read_func)(T*) const) const {
- return unsafeReadTypedVector(val, read_func);
-}
-
-template<typename T>
-status_t Parcel::readNullableTypedVector(std::optional<std::vector<T>>* val,
- status_t(Parcel::*read_func)(T*) const) const {
- const size_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->emplace();
-
- status = unsafeReadTypedVector(&**val, read_func);
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-template<typename T>
-status_t Parcel::readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
- status_t(Parcel::*read_func)(T*) const) const {
- const size_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->reset(new std::vector<T>());
-
- status = unsafeReadTypedVector(val->get(), read_func);
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-template<typename T, typename U>
-status_t Parcel::unsafeWriteTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(U)) {
- if (val.size() > std::numeric_limits<int32_t>::max()) {
- return BAD_VALUE;
- }
-
- status_t status = this->writeInt32(static_cast<int32_t>(val.size()));
-
- if (status != OK) {
- return status;
- }
-
- for (const auto& item : val) {
- status = (this->*write_func)(item);
-
- if (status != OK) {
- return status;
- }
- }
-
- return OK;
-}
-
-template<typename T>
-status_t Parcel::writeTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(const T&)) {
- return unsafeWriteTypedVector(val, write_func);
-}
-
-template<typename T>
-status_t Parcel::writeTypedVector(const std::vector<T>& val,
- status_t(Parcel::*write_func)(T)) {
- return unsafeWriteTypedVector(val, write_func);
-}
-
-template<typename T>
-status_t Parcel::writeNullableTypedVector(const std::optional<std::vector<T>>& val,
- status_t(Parcel::*write_func)(const T&)) {
- if (!val) {
- return this->writeInt32(-1);
- }
-
- return unsafeWriteTypedVector(*val, write_func);
-}
-
-template<typename T>
-status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
- status_t(Parcel::*write_func)(const T&)) {
- if (val.get() == nullptr) {
- return this->writeInt32(-1);
- }
-
- return unsafeWriteTypedVector(*val, write_func);
-}
-
-template<typename T>
-status_t Parcel::writeNullableTypedVector(const std::optional<std::vector<T>>& val,
- status_t(Parcel::*write_func)(T)) {
- if (!val) {
- return this->writeInt32(-1);
- }
-
- return unsafeWriteTypedVector(*val, write_func);
-}
-
-template<typename T>
-status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
- status_t(Parcel::*write_func)(T)) {
- if (val.get() == nullptr) {
- return this->writeInt32(-1);
- }
-
- return unsafeWriteTypedVector(*val, write_func);
-}
-
-template<typename T>
-status_t Parcel::readParcelableVector(std::vector<T>* val) const {
- return unsafeReadTypedVector<T, Parcelable>(val, &Parcel::readParcelable);
-}
-
-template<typename T>
-status_t Parcel::readParcelableVector(std::optional<std::vector<std::optional<T>>>* val) const {
- const size_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->emplace();
-
- using NullableT = std::optional<T>;
- status = unsafeReadTypedVector<NullableT, NullableT>(&**val, &Parcel::readParcelable);
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-template<typename T>
-status_t Parcel::readParcelableVector(std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const {
- const size_t start = dataPosition();
- int32_t size;
- status_t status = readVectorSizeWithCoarseBoundCheck(&size);
- val->reset();
-
- if (status != OK || size < 0) {
- return status;
- }
-
- setDataPosition(start);
- val->reset(new std::vector<std::unique_ptr<T>>());
-
- using NullableT = std::unique_ptr<T>;
- status = unsafeReadTypedVector<NullableT, NullableT>(val->get(), &Parcel::readParcelable);
-
- if (status != OK) {
- val->reset();
- }
-
- return status;
-}
-
-template<typename T>
-status_t Parcel::readParcelable(std::optional<T>* parcelable) const {
- const size_t start = dataPosition();
- int32_t present;
- status_t status = readInt32(&present);
- parcelable->reset();
-
- if (status != OK || !present) {
- return status;
- }
-
- setDataPosition(start);
- parcelable->emplace();
-
- status = readParcelable(&**parcelable);
-
- if (status != OK) {
- parcelable->reset();
- }
-
- return status;
-}
-
-template<typename T>
-status_t Parcel::readParcelable(std::unique_ptr<T>* parcelable) const {
- const size_t start = dataPosition();
- int32_t present;
- status_t status = readInt32(&present);
- parcelable->reset();
-
- if (status != OK || !present) {
- return status;
- }
-
- setDataPosition(start);
- parcelable->reset(new T());
-
- status = readParcelable(parcelable->get());
-
- if (status != OK) {
- parcelable->reset();
- }
-
- return status;
-}
-
-template<typename T>
-status_t Parcel::writeNullableParcelable(const std::optional<T>& parcelable) {
- return writeRawNullableParcelable(parcelable ? &*parcelable : nullptr);
-}
-
-template<typename T>
-status_t Parcel::writeNullableParcelable(const std::unique_ptr<T>& parcelable) {
- return writeRawNullableParcelable(parcelable.get());
-}
-
-template<typename T>
-status_t Parcel::writeParcelableVector(const std::vector<T>& val) {
- return unsafeWriteTypedVector<T,const Parcelable&>(val, &Parcel::writeParcelable);
-}
-
-template<typename T>
-status_t Parcel::writeParcelableVector(const std::optional<std::vector<std::optional<T>>>& val) {
- if (!val) {
- return this->writeInt32(-1);
- }
-
- using NullableT = std::optional<T>;
- return unsafeWriteTypedVector<NullableT, const NullableT&>(*val, &Parcel::writeNullableParcelable);
-}
-
-template<typename T>
-status_t Parcel::writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val) {
- if (val.get() == nullptr) {
- return this->writeInt32(-1);
- }
-
- return unsafeWriteTypedVector(*val, &Parcel::writeNullableParcelable<T>);
-}
-
-template<typename T>
-status_t Parcel::writeParcelableVector(const std::shared_ptr<std::vector<std::unique_ptr<T>>>& val) {
- if (val.get() == nullptr) {
- return this->writeInt32(-1);
- }
-
- using NullableT = std::unique_ptr<T>;
- return unsafeWriteTypedVector<NullableT, const NullableT&>(*val, &Parcel::writeNullableParcelable);
-}
-
-template<typename T>
-status_t Parcel::writeParcelableVector(const std::shared_ptr<std::vector<std::optional<T>>>& val) {
- if (val.get() == nullptr) {
- return this->writeInt32(-1);
- }
-
- using NullableT = std::optional<T>;
- return unsafeWriteTypedVector<NullableT, const NullableT&>(*val, &Parcel::writeNullableParcelable);
-}
-
-template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int32_t>, bool>>
-status_t Parcel::writeEnum(const T& val) {
- return writeInt32(static_cast<int32_t>(val));
-}
-template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int64_t>, bool>>
-status_t Parcel::writeEnum(const T& val) {
- return writeInt64(static_cast<int64_t>(val));
-}
-
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::vector<T>& val) {
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val.data()), val.size());
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::optional<std::vector<T>>& val) {
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val->data()), val->size());
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::unique_ptr<std::vector<T>>& val) {
- if (!val) return writeInt32(-1);
- return writeByteVectorInternal(reinterpret_cast<const int8_t*>(val->data()), val->size());
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::vector<T>& val) {
- return writeTypedVector(val, &Parcel::writeEnum);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::optional<std::vector<T>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeEnum);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::writeEnumVector(const std::unique_ptr<std::vector<T>>& val) {
- return writeNullableTypedVector(val, &Parcel::writeEnum);
-}
-
-template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int32_t>, bool>>
-status_t Parcel::readEnum(T* pArg) const {
- return readInt32(reinterpret_cast<int32_t *>(pArg));
-}
-template<typename T, std::enable_if_t<std::is_same_v<typename std::underlying_type_t<T>,int64_t>, bool>>
-status_t Parcel::readEnum(T* pArg) const {
- return readInt64(reinterpret_cast<int64_t *>(pArg));
-}
-
-template<typename T>
-inline status_t Parcel::readByteVectorInternal(std::vector<T>* val, size_t size) const {
- // readByteVectorInternal expects a vector that has been reserved (but not
- // resized) to have the provided size.
- const T* data = reinterpret_cast<const T*>(readInplace(size));
- if (!data) return BAD_VALUE;
- val->clear();
- val->insert(val->begin(), data, data+size);
- return NO_ERROR;
-}
-
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::vector<T>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- return readByteVectorInternal(val, size);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::optional<std::vector<T>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (!*val) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null Enum vector.
- return OK;
- }
- return readByteVectorInternal(&**val, size);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::unique_ptr<std::vector<T>>* val) const {
- size_t size;
- if (status_t status = reserveOutVector(val, &size); status != OK) return status;
- if (val->get() == nullptr) {
- // reserveOutVector does not create the out vector if size is < 0.
- // This occurs when writing a null Enum vector.
- return OK;
- }
- return readByteVectorInternal(val->get(), size);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::vector<T>* val) const {
- return readTypedVector(val, &Parcel::readEnum);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::optional<std::vector<T>>* val) const {
- return readNullableTypedVector(val, &Parcel::readEnum);
-}
-template<typename T, std::enable_if_t<std::is_enum_v<T> && !std::is_same_v<typename std::underlying_type_t<T>,int8_t>, bool>>
-status_t Parcel::readEnumVector(std::unique_ptr<std::vector<T>>* val) const {
- return readNullableTypedVector(val, &Parcel::readEnum);
-}
-
// ---------------------------------------------------------------------------
inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel)
diff --git a/libs/binder/tests/binderParcelBenchmark.cpp b/libs/binder/tests/binderParcelBenchmark.cpp
index ec69c36..26c50eb 100644
--- a/libs/binder/tests/binderParcelBenchmark.cpp
+++ b/libs/binder/tests/binderParcelBenchmark.cpp
@@ -91,56 +91,56 @@
Results on Crosshatch Pixel 3XL
- #BM_BoolVector/1 40 ns 40 ns 17261011
- #BM_BoolVector/2 46 ns 46 ns 15029619
- #BM_BoolVector/4 65 ns 64 ns 10888021
- #BM_BoolVector/8 114 ns 114 ns 6130937
- #BM_BoolVector/16 179 ns 179 ns 3902462
- #BM_BoolVector/32 328 ns 327 ns 2138812
- #BM_BoolVector/64 600 ns 598 ns 1169414
- #BM_BoolVector/128 1168 ns 1165 ns 601281
- #BM_BoolVector/256 2288 ns 2281 ns 305737
- #BM_BoolVector/512 4535 ns 4521 ns 154668
- #BM_ByteVector/1 53 ns 52 ns 13212196
- #BM_ByteVector/2 53 ns 53 ns 13194050
- #BM_ByteVector/4 50 ns 50 ns 13768037
- #BM_ByteVector/8 50 ns 50 ns 13890210
- #BM_ByteVector/16 50 ns 50 ns 13897305
- #BM_ByteVector/32 51 ns 51 ns 13679862
- #BM_ByteVector/64 54 ns 53 ns 12988544
- #BM_ByteVector/128 64 ns 64 ns 10921227
- #BM_ByteVector/256 82 ns 81 ns 8542549
- #BM_ByteVector/512 118 ns 118 ns 5862931
- #BM_CharVector/1 32 ns 32 ns 21783579
- #BM_CharVector/2 38 ns 38 ns 18200971
- #BM_CharVector/4 53 ns 53 ns 13111785
- #BM_CharVector/8 80 ns 80 ns 8698331
- #BM_CharVector/16 159 ns 159 ns 4390738
- #BM_CharVector/32 263 ns 262 ns 2667310
- #BM_CharVector/64 486 ns 485 ns 1441118
- #BM_CharVector/128 937 ns 934 ns 749006
- #BM_CharVector/256 1848 ns 1843 ns 379537
- #BM_CharVector/512 3650 ns 3639 ns 191713
- #BM_Int32Vector/1 31 ns 31 ns 22104147
- #BM_Int32Vector/2 38 ns 38 ns 18075471
- #BM_Int32Vector/4 53 ns 52 ns 13249969
- #BM_Int32Vector/8 80 ns 80 ns 8719798
- #BM_Int32Vector/16 161 ns 160 ns 4350096
- #BM_Int32Vector/32 271 ns 270 ns 2591896
- #BM_Int32Vector/64 499 ns 498 ns 1406201
- #BM_Int32Vector/128 948 ns 945 ns 740052
- #BM_Int32Vector/256 1855 ns 1849 ns 379127
- #BM_Int32Vector/512 3665 ns 3653 ns 191533
- #BM_Int64Vector/1 31 ns 31 ns 22388370
- #BM_Int64Vector/2 38 ns 38 ns 18300347
- #BM_Int64Vector/4 53 ns 53 ns 13137818
- #BM_Int64Vector/8 81 ns 81 ns 8599613
- #BM_Int64Vector/16 167 ns 166 ns 4195953
- #BM_Int64Vector/32 280 ns 280 ns 2499271
- #BM_Int64Vector/64 523 ns 522 ns 1341380
- #BM_Int64Vector/128 991 ns 988 ns 707437
- #BM_Int64Vector/256 1940 ns 1934 ns 361704
- #BM_Int64Vector/512 3843 ns 3831 ns 183204
+ #BM_BoolVector/1 44 ns 44 ns 15630626
+ #BM_BoolVector/2 54 ns 54 ns 12900340
+ #BM_BoolVector/4 73 ns 72 ns 9749841
+ #BM_BoolVector/8 107 ns 107 ns 6503326
+ #BM_BoolVector/16 186 ns 185 ns 3773627
+ #BM_BoolVector/32 337 ns 336 ns 2083877
+ #BM_BoolVector/64 607 ns 605 ns 1154113
+ #BM_BoolVector/128 1155 ns 1151 ns 608128
+ #BM_BoolVector/256 2259 ns 2253 ns 310973
+ #BM_BoolVector/512 4469 ns 4455 ns 157277
+ #BM_ByteVector/1 41 ns 41 ns 16837425
+ #BM_ByteVector/2 41 ns 41 ns 16820726
+ #BM_ByteVector/4 38 ns 38 ns 18217813
+ #BM_ByteVector/8 38 ns 38 ns 18290298
+ #BM_ByteVector/16 38 ns 38 ns 18117817
+ #BM_ByteVector/32 38 ns 38 ns 18172385
+ #BM_ByteVector/64 41 ns 41 ns 16950055
+ #BM_ByteVector/128 53 ns 53 ns 13170749
+ #BM_ByteVector/256 69 ns 69 ns 10113626
+ #BM_ByteVector/512 106 ns 106 ns 6561936
+ #BM_CharVector/1 38 ns 38 ns 18074831
+ #BM_CharVector/2 40 ns 40 ns 17206266
+ #BM_CharVector/4 50 ns 50 ns 13785944
+ #BM_CharVector/8 67 ns 67 ns 10223316
+ #BM_CharVector/16 96 ns 96 ns 7297285
+ #BM_CharVector/32 156 ns 155 ns 4484845
+ #BM_CharVector/64 277 ns 276 ns 2536003
+ #BM_CharVector/128 520 ns 518 ns 1347070
+ #BM_CharVector/256 1006 ns 1003 ns 695952
+ #BM_CharVector/512 1976 ns 1970 ns 354673
+ #BM_Int32Vector/1 41 ns 41 ns 16951262
+ #BM_Int32Vector/2 41 ns 41 ns 16916883
+ #BM_Int32Vector/4 41 ns 41 ns 16761373
+ #BM_Int32Vector/8 42 ns 42 ns 16553179
+ #BM_Int32Vector/16 43 ns 43 ns 16200362
+ #BM_Int32Vector/32 55 ns 54 ns 12724454
+ #BM_Int32Vector/64 70 ns 69 ns 10049223
+ #BM_Int32Vector/128 107 ns 107 ns 6525796
+ #BM_Int32Vector/256 179 ns 178 ns 3922563
+ #BM_Int32Vector/512 324 ns 323 ns 2160653
+ #BM_Int64Vector/1 41 ns 41 ns 16909470
+ #BM_Int64Vector/2 41 ns 41 ns 16740788
+ #BM_Int64Vector/4 42 ns 42 ns 16564197
+ #BM_Int64Vector/8 43 ns 42 ns 16284082
+ #BM_Int64Vector/16 54 ns 54 ns 12839474
+ #BM_Int64Vector/32 69 ns 69 ns 10011010
+ #BM_Int64Vector/64 107 ns 106 ns 6557956
+ #BM_Int64Vector/128 177 ns 177 ns 3925618
+ #BM_Int64Vector/256 324 ns 323 ns 2163321
+ #BM_Int64Vector/512 613 ns 611 ns 1140418
*/
static void BM_BoolVector(benchmark::State& state) {