[RenderEngine] Move RenderEngine to libs/renderengine
To do side-by-side comparison between readback buffer from hardware composer
and client target of RenderEngine, we need RenderEngine to be accessible in
VTS, which means RenderEngine should be part of VNDK. This patch moves
RenderEngine out of SurfaceFlinger to libs/renderengine.
BUG: 112585051
Test: build, flash, boot and do some display validation
Change-Id: Ib6b302eaad04c7cc6c5bae39b1d25b38be188d01
diff --git a/libs/renderengine/gl/ProgramCache.cpp b/libs/renderengine/gl/ProgramCache.cpp
new file mode 100644
index 0000000..464fc15
--- /dev/null
+++ b/libs/renderengine/gl/ProgramCache.cpp
@@ -0,0 +1,684 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define ATRACE_TAG ATRACE_TAG_GRAPHICS
+
+#include "ProgramCache.h"
+
+#include <GLES2/gl2.h>
+#include <GLES2/gl2ext.h>
+#include <log/log.h>
+#include <renderengine/private/Description.h>
+#include <utils/String8.h>
+#include <utils/Trace.h>
+#include "Program.h"
+
+ANDROID_SINGLETON_STATIC_INSTANCE(android::renderengine::gl::ProgramCache)
+
+namespace android {
+namespace renderengine {
+namespace gl {
+
+/*
+ * A simple formatter class to automatically add the endl and
+ * manage the indentation.
+ */
+
+class Formatter;
+static Formatter& indent(Formatter& f);
+static Formatter& dedent(Formatter& f);
+
+class Formatter {
+ String8 mString;
+ int mIndent;
+ typedef Formatter& (*FormaterManipFunc)(Formatter&);
+ friend Formatter& indent(Formatter& f);
+ friend Formatter& dedent(Formatter& f);
+
+public:
+ Formatter() : mIndent(0) {}
+
+ String8 getString() const { return mString; }
+
+ friend Formatter& operator<<(Formatter& out, const char* in) {
+ for (int i = 0; i < out.mIndent; i++) {
+ out.mString.append(" ");
+ }
+ out.mString.append(in);
+ out.mString.append("\n");
+ return out;
+ }
+ friend inline Formatter& operator<<(Formatter& out, const String8& in) {
+ return operator<<(out, in.string());
+ }
+ friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
+ return (*func)(to);
+ }
+};
+Formatter& indent(Formatter& f) {
+ f.mIndent++;
+ return f;
+}
+Formatter& dedent(Formatter& f) {
+ f.mIndent--;
+ return f;
+}
+
+void ProgramCache::primeCache(bool useColorManagement) {
+ uint32_t shaderCount = 0;
+ uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK;
+ // Prime the cache for all combinations of the above masks,
+ // leaving off the experimental color matrix mask options.
+
+ nsecs_t timeBefore = systemTime();
+ for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
+ Key shaderKey;
+ shaderKey.set(keyMask, keyVal);
+ uint32_t tex = shaderKey.getTextureTarget();
+ if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
+ continue;
+ }
+ if (mCache.count(shaderKey) == 0) {
+ mCache.emplace(shaderKey, generateProgram(shaderKey));
+ shaderCount++;
+ }
+ }
+
+ // Prime for sRGB->P3 conversion
+ if (useColorManagement) {
+ Key shaderKey;
+ shaderKey.set(Key::BLEND_MASK | Key::TEXTURE_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK |
+ Key::INPUT_TF_MASK | Key::OUTPUT_TF_MASK,
+ Key::BLEND_PREMULT | Key::TEXTURE_EXT | Key::OUTPUT_TRANSFORM_MATRIX_ON |
+ Key::INPUT_TF_SRGB | Key::OUTPUT_TF_SRGB);
+ for (int i = 0; i < 4; i++) {
+ shaderKey.set(Key::OPACITY_MASK,
+ (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
+ shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
+ if (mCache.count(shaderKey) == 0) {
+ mCache.emplace(shaderKey, generateProgram(shaderKey));
+ shaderCount++;
+ }
+ }
+ }
+
+ nsecs_t timeAfter = systemTime();
+ float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
+ ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
+}
+
+ProgramCache::Key ProgramCache::computeKey(const Description& description) {
+ Key needs;
+ needs.set(Key::TEXTURE_MASK,
+ !description.textureEnabled
+ ? Key::TEXTURE_OFF
+ : description.texture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
+ ? Key::TEXTURE_EXT
+ : description.texture.getTextureTarget() == GL_TEXTURE_2D
+ ? Key::TEXTURE_2D
+ : Key::TEXTURE_OFF)
+ .set(Key::ALPHA_MASK, (description.color.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
+ .set(Key::BLEND_MASK,
+ description.isPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
+ .set(Key::OPACITY_MASK,
+ description.isOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
+ .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
+ description.hasInputTransformMatrix() ? Key::INPUT_TRANSFORM_MATRIX_ON
+ : Key::INPUT_TRANSFORM_MATRIX_OFF)
+ .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
+ description.hasOutputTransformMatrix() || description.hasColorMatrix()
+ ? Key::OUTPUT_TRANSFORM_MATRIX_ON
+ : Key::OUTPUT_TRANSFORM_MATRIX_OFF);
+
+ needs.set(Key::Y410_BT2020_MASK,
+ description.isY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
+
+ if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+ switch (description.inputTransferFunction) {
+ case Description::TransferFunction::LINEAR:
+ default:
+ needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
+ break;
+ case Description::TransferFunction::SRGB:
+ needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
+ break;
+ case Description::TransferFunction::ST2084:
+ needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
+ break;
+ case Description::TransferFunction::HLG:
+ needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
+ break;
+ }
+
+ switch (description.outputTransferFunction) {
+ case Description::TransferFunction::LINEAR:
+ default:
+ needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
+ break;
+ case Description::TransferFunction::SRGB:
+ needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
+ break;
+ case Description::TransferFunction::ST2084:
+ needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
+ break;
+ case Description::TransferFunction::HLG:
+ needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
+ break;
+ }
+ }
+
+ return needs;
+}
+
+// Generate EOTF that converts signal values to relative display light,
+// both normalized to [0, 1].
+void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
+ switch (needs.getInputTF()) {
+ case Key::INPUT_TF_SRGB:
+ fs << R"__SHADER__(
+ float EOTF_sRGB(float srgb) {
+ return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
+ }
+
+ vec3 EOTF_sRGB(const vec3 srgb) {
+ return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
+ }
+
+ vec3 EOTF(const vec3 srgb) {
+ return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
+ }
+ )__SHADER__";
+ break;
+ case Key::INPUT_TF_ST2084:
+ fs << R"__SHADER__(
+ vec3 EOTF(const highp vec3 color) {
+ const highp float m1 = (2610.0 / 4096.0) / 4.0;
+ const highp float m2 = (2523.0 / 4096.0) * 128.0;
+ const highp float c1 = (3424.0 / 4096.0);
+ const highp float c2 = (2413.0 / 4096.0) * 32.0;
+ const highp float c3 = (2392.0 / 4096.0) * 32.0;
+
+ highp vec3 tmp = pow(color, 1.0 / vec3(m2));
+ tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
+ return pow(tmp, 1.0 / vec3(m1));
+ }
+ )__SHADER__";
+ break;
+ case Key::INPUT_TF_HLG:
+ fs << R"__SHADER__(
+ highp float EOTF_channel(const highp float channel) {
+ const highp float a = 0.17883277;
+ const highp float b = 0.28466892;
+ const highp float c = 0.55991073;
+ return channel <= 0.5 ? channel * channel / 3.0 :
+ (exp((channel - c) / a) + b) / 12.0;
+ }
+
+ vec3 EOTF(const highp vec3 color) {
+ return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
+ EOTF_channel(color.b));
+ }
+ )__SHADER__";
+ break;
+ default:
+ fs << R"__SHADER__(
+ vec3 EOTF(const vec3 linear) {
+ return linear;
+ }
+ )__SHADER__";
+ break;
+ }
+}
+
+void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
+ // Convert relative light to absolute light.
+ switch (needs.getInputTF()) {
+ case Key::INPUT_TF_ST2084:
+ fs << R"__SHADER__(
+ highp vec3 ScaleLuminance(highp vec3 color) {
+ return color * 10000.0;
+ }
+ )__SHADER__";
+ break;
+ case Key::INPUT_TF_HLG:
+ fs << R"__SHADER__(
+ highp vec3 ScaleLuminance(highp vec3 color) {
+ // The formula is:
+ // alpha * pow(Y, gamma - 1.0) * color + beta;
+ // where alpha is 1000.0, gamma is 1.2, beta is 0.0.
+ return color * 1000.0 * pow(color.y, 0.2);
+ }
+ )__SHADER__";
+ break;
+ default:
+ fs << R"__SHADER__(
+ highp vec3 ScaleLuminance(highp vec3 color) {
+ return color * displayMaxLuminance;
+ }
+ )__SHADER__";
+ break;
+ }
+
+ // Tone map absolute light to display luminance range.
+ switch (needs.getInputTF()) {
+ case Key::INPUT_TF_ST2084:
+ case Key::INPUT_TF_HLG:
+ switch (needs.getOutputTF()) {
+ case Key::OUTPUT_TF_HLG:
+ // Right now when mixed PQ and HLG contents are presented,
+ // HLG content will always be converted to PQ. However, for
+ // completeness, we simply clamp the value to [0.0, 1000.0].
+ fs << R"__SHADER__(
+ highp vec3 ToneMap(highp vec3 color) {
+ return clamp(color, 0.0, 1000.0);
+ }
+ )__SHADER__";
+ break;
+ case Key::OUTPUT_TF_ST2084:
+ fs << R"__SHADER__(
+ highp vec3 ToneMap(highp vec3 color) {
+ return color;
+ }
+ )__SHADER__";
+ break;
+ default:
+ fs << R"__SHADER__(
+ highp vec3 ToneMap(highp vec3 color) {
+ const float maxMasteringLumi = 1000.0;
+ const float maxContentLumi = 1000.0;
+ const float maxInLumi = min(maxMasteringLumi, maxContentLumi);
+ float maxOutLumi = displayMaxLuminance;
+
+ float nits = color.y;
+
+ // clamp to max input luminance
+ nits = clamp(nits, 0.0, maxInLumi);
+
+ // scale [0.0, maxInLumi] to [0.0, maxOutLumi]
+ if (maxInLumi <= maxOutLumi) {
+ return color * (maxOutLumi / maxInLumi);
+ } else {
+ // three control points
+ const float x0 = 10.0;
+ const float y0 = 17.0;
+ float x1 = maxOutLumi * 0.75;
+ float y1 = x1;
+ float x2 = x1 + (maxInLumi - x1) / 2.0;
+ float y2 = y1 + (maxOutLumi - y1) * 0.75;
+
+ // horizontal distances between the last three control points
+ float h12 = x2 - x1;
+ float h23 = maxInLumi - x2;
+ // tangents at the last three control points
+ float m1 = (y2 - y1) / h12;
+ float m3 = (maxOutLumi - y2) / h23;
+ float m2 = (m1 + m3) / 2.0;
+
+ if (nits < x0) {
+ // scale [0.0, x0] to [0.0, y0] linearly
+ float slope = y0 / x0;
+ return color * slope;
+ } else if (nits < x1) {
+ // scale [x0, x1] to [y0, y1] linearly
+ float slope = (y1 - y0) / (x1 - x0);
+ nits = y0 + (nits - x0) * slope;
+ } else if (nits < x2) {
+ // scale [x1, x2] to [y1, y2] using Hermite interp
+ float t = (nits - x1) / h12;
+ nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
+ (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
+ } else {
+ // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
+ float t = (nits - x2) / h23;
+ nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
+ (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
+ }
+ }
+
+ // color.y is greater than x0 and is thus non-zero
+ return color * (nits / color.y);
+ }
+ )__SHADER__";
+ break;
+ }
+ break;
+ default:
+ // inverse tone map; the output luminance can be up to maxOutLumi.
+ fs << R"__SHADER__(
+ highp vec3 ToneMap(highp vec3 color) {
+ const float maxOutLumi = 3000.0;
+
+ const float x0 = 5.0;
+ const float y0 = 2.5;
+ float x1 = displayMaxLuminance * 0.7;
+ float y1 = maxOutLumi * 0.15;
+ float x2 = displayMaxLuminance * 0.9;
+ float y2 = maxOutLumi * 0.45;
+ float x3 = displayMaxLuminance;
+ float y3 = maxOutLumi;
+
+ float c1 = y1 / 3.0;
+ float c2 = y2 / 2.0;
+ float c3 = y3 / 1.5;
+
+ float nits = color.y;
+
+ float scale;
+ if (nits <= x0) {
+ // scale [0.0, x0] to [0.0, y0] linearly
+ const float slope = y0 / x0;
+ return color * slope;
+ } else if (nits <= x1) {
+ // scale [x0, x1] to [y0, y1] using a curve
+ float t = (nits - x0) / (x1 - x0);
+ nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
+ } else if (nits <= x2) {
+ // scale [x1, x2] to [y1, y2] using a curve
+ float t = (nits - x1) / (x2 - x1);
+ nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
+ } else {
+ // scale [x2, x3] to [y2, y3] using a curve
+ float t = (nits - x2) / (x3 - x2);
+ nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
+ }
+
+ // color.y is greater than x0 and is thus non-zero
+ return color * (nits / color.y);
+ }
+ )__SHADER__";
+ break;
+ }
+
+ // convert absolute light to relative light.
+ switch (needs.getOutputTF()) {
+ case Key::OUTPUT_TF_ST2084:
+ fs << R"__SHADER__(
+ highp vec3 NormalizeLuminance(highp vec3 color) {
+ return color / 10000.0;
+ }
+ )__SHADER__";
+ break;
+ case Key::OUTPUT_TF_HLG:
+ fs << R"__SHADER__(
+ highp vec3 NormalizeLuminance(highp vec3 color) {
+ return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
+ }
+ )__SHADER__";
+ break;
+ default:
+ fs << R"__SHADER__(
+ highp vec3 NormalizeLuminance(highp vec3 color) {
+ return color / displayMaxLuminance;
+ }
+ )__SHADER__";
+ break;
+ }
+}
+
+// Generate OOTF that modifies the relative scence light to relative display light.
+void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
+ if (!needs.needsToneMapping()) {
+ fs << R"__SHADER__(
+ highp vec3 OOTF(const highp vec3 color) {
+ return color;
+ }
+ )__SHADER__";
+ } else {
+ generateToneMappingProcess(fs, needs);
+ fs << R"__SHADER__(
+ highp vec3 OOTF(const highp vec3 color) {
+ return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
+ }
+ )__SHADER__";
+ }
+}
+
+// Generate OETF that converts relative display light to signal values,
+// both normalized to [0, 1]
+void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
+ switch (needs.getOutputTF()) {
+ case Key::OUTPUT_TF_SRGB:
+ fs << R"__SHADER__(
+ float OETF_sRGB(const float linear) {
+ return linear <= 0.0031308 ?
+ linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
+ }
+
+ vec3 OETF_sRGB(const vec3 linear) {
+ return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
+ }
+
+ vec3 OETF(const vec3 linear) {
+ return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
+ }
+ )__SHADER__";
+ break;
+ case Key::OUTPUT_TF_ST2084:
+ fs << R"__SHADER__(
+ vec3 OETF(const vec3 linear) {
+ const highp float m1 = (2610.0 / 4096.0) / 4.0;
+ const highp float m2 = (2523.0 / 4096.0) * 128.0;
+ const highp float c1 = (3424.0 / 4096.0);
+ const highp float c2 = (2413.0 / 4096.0) * 32.0;
+ const highp float c3 = (2392.0 / 4096.0) * 32.0;
+
+ highp vec3 tmp = pow(linear, vec3(m1));
+ tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
+ return pow(tmp, vec3(m2));
+ }
+ )__SHADER__";
+ break;
+ case Key::OUTPUT_TF_HLG:
+ fs << R"__SHADER__(
+ highp float OETF_channel(const highp float channel) {
+ const highp float a = 0.17883277;
+ const highp float b = 0.28466892;
+ const highp float c = 0.55991073;
+ return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
+ a * log(12.0 * channel - b) + c;
+ }
+
+ vec3 OETF(const highp vec3 color) {
+ return vec3(OETF_channel(color.r), OETF_channel(color.g),
+ OETF_channel(color.b));
+ }
+ )__SHADER__";
+ break;
+ default:
+ fs << R"__SHADER__(
+ vec3 OETF(const vec3 linear) {
+ return linear;
+ }
+ )__SHADER__";
+ break;
+ }
+}
+
+String8 ProgramCache::generateVertexShader(const Key& needs) {
+ Formatter vs;
+ if (needs.isTexturing()) {
+ vs << "attribute vec4 texCoords;"
+ << "varying vec2 outTexCoords;";
+ }
+ vs << "attribute vec4 position;"
+ << "uniform mat4 projection;"
+ << "uniform mat4 texture;"
+ << "void main(void) {" << indent << "gl_Position = projection * position;";
+ if (needs.isTexturing()) {
+ vs << "outTexCoords = (texture * texCoords).st;";
+ }
+ vs << dedent << "}";
+ return vs.getString();
+}
+
+String8 ProgramCache::generateFragmentShader(const Key& needs) {
+ Formatter fs;
+ if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
+ fs << "#extension GL_OES_EGL_image_external : require";
+ }
+
+ // default precision is required-ish in fragment shaders
+ fs << "precision mediump float;";
+
+ if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
+ fs << "uniform samplerExternalOES sampler;"
+ << "varying vec2 outTexCoords;";
+ } else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
+ fs << "uniform sampler2D sampler;"
+ << "varying vec2 outTexCoords;";
+ }
+
+ if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
+ fs << "uniform vec4 color;";
+ }
+
+ if (needs.isY410BT2020()) {
+ fs << R"__SHADER__(
+ vec3 convertY410BT2020(const vec3 color) {
+ const vec3 offset = vec3(0.0625, 0.5, 0.5);
+ const mat3 transform = mat3(
+ vec3(1.1678, 1.1678, 1.1678),
+ vec3( 0.0, -0.1878, 2.1481),
+ vec3(1.6836, -0.6523, 0.0));
+ // Y is in G, U is in R, and V is in B
+ return clamp(transform * (color.grb - offset), 0.0, 1.0);
+ }
+ )__SHADER__";
+ }
+
+ if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+ // Currently, display maximum luminance is needed when doing tone mapping.
+ if (needs.needsToneMapping()) {
+ fs << "uniform float displayMaxLuminance;";
+ }
+
+ if (needs.hasInputTransformMatrix()) {
+ fs << "uniform mat4 inputTransformMatrix;";
+ fs << R"__SHADER__(
+ highp vec3 InputTransform(const highp vec3 color) {
+ return clamp(vec3(inputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
+ }
+ )__SHADER__";
+ } else {
+ fs << R"__SHADER__(
+ highp vec3 InputTransform(const highp vec3 color) {
+ return color;
+ }
+ )__SHADER__";
+ }
+
+ // the transformation from a wider colorspace to a narrower one can
+ // result in >1.0 or <0.0 pixel values
+ if (needs.hasOutputTransformMatrix()) {
+ fs << "uniform mat4 outputTransformMatrix;";
+ fs << R"__SHADER__(
+ highp vec3 OutputTransform(const highp vec3 color) {
+ return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
+ }
+ )__SHADER__";
+ } else {
+ fs << R"__SHADER__(
+ highp vec3 OutputTransform(const highp vec3 color) {
+ return clamp(color, 0.0, 1.0);
+ }
+ )__SHADER__";
+ }
+
+ generateEOTF(fs, needs);
+ generateOOTF(fs, needs);
+ generateOETF(fs, needs);
+ }
+
+ fs << "void main(void) {" << indent;
+ if (needs.isTexturing()) {
+ fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
+ if (needs.isY410BT2020()) {
+ fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
+ }
+ } else {
+ fs << "gl_FragColor.rgb = color.rgb;";
+ fs << "gl_FragColor.a = 1.0;";
+ }
+ if (needs.isOpaque()) {
+ fs << "gl_FragColor.a = 1.0;";
+ }
+ if (needs.hasAlpha()) {
+ // modulate the current alpha value with alpha set
+ if (needs.isPremultiplied()) {
+ // ... and the color too if we're premultiplied
+ fs << "gl_FragColor *= color.a;";
+ } else {
+ fs << "gl_FragColor.a *= color.a;";
+ }
+ }
+
+ if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
+ if (!needs.isOpaque() && needs.isPremultiplied()) {
+ // un-premultiply if needed before linearization
+ // avoid divide by 0 by adding 0.5/256 to the alpha channel
+ fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
+ }
+ fs << "gl_FragColor.rgb = "
+ "OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));";
+ if (!needs.isOpaque() && needs.isPremultiplied()) {
+ // and re-premultiply if needed after gamma correction
+ fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
+ }
+ }
+
+ fs << dedent << "}";
+ return fs.getString();
+}
+
+std::unique_ptr<Program> ProgramCache::generateProgram(const Key& needs) {
+ ATRACE_CALL();
+
+ // vertex shader
+ String8 vs = generateVertexShader(needs);
+
+ // fragment shader
+ String8 fs = generateFragmentShader(needs);
+
+ return std::make_unique<Program>(needs, vs.string(), fs.string());
+}
+
+void ProgramCache::useProgram(const Description& description) {
+ // generate the key for the shader based on the description
+ Key needs(computeKey(description));
+
+ // look-up the program in the cache
+ auto it = mCache.find(needs);
+ if (it == mCache.end()) {
+ // we didn't find our program, so generate one...
+ nsecs_t time = systemTime();
+ it = mCache.emplace(needs, generateProgram(needs)).first;
+ time = systemTime() - time;
+
+ ALOGV(">>> generated new program: needs=%08X, time=%u ms (%zu programs)", needs.mKey,
+ uint32_t(ns2ms(time)), mCache.size());
+ }
+
+ // here we have a suitable program for this description
+ std::unique_ptr<Program>& program = it->second;
+ if (program->isValid()) {
+ program->use();
+ program->setUniforms(description);
+ }
+}
+
+} // namespace gl
+} // namespace renderengine
+} // namespace android