Update motion prediction model.
Input events with no movement (r = 0) are now included in the buffer
so that the model can accurately determine when the input device has
become stationary, and a noise floor is added to prevent spurious
predictions when this happens.
Benchmark results:
Old:
timeRecordAndPredict_mean (ns): 17990
timeRecordAndPredict_median (ns): 18024
timeRecordAndPredict_min (ns): 17606
timeRecordAndPredict_standardDeviation: 345
New:
timeRecordAndPredict_mean (ns): 38394
timeRecordAndPredict_median (ns): 38476
timeRecordAndPredict_min (ns): 38083
timeRecordAndPredict_standardDeviation: 187
Bug: 288354672
PiperOrigin-RevId: 549064247
Test: predictions are visible in the motionprediction test app
Test: atest CtsInputTestCases
Test: atest MotionPredictorBenchmark MotionPredictorTest
Test: atest --host libinput_tests
Change-Id: I6c3917591323d7117c4ee2e91abf6c6004178f19
diff --git a/libs/input/MotionPredictor.cpp b/libs/input/MotionPredictor.cpp
index 68e6888..c2ea35c 100644
--- a/libs/input/MotionPredictor.cpp
+++ b/libs/input/MotionPredictor.cpp
@@ -138,7 +138,8 @@
// Pass input event to the MetricsManager.
if (!mMetricsManager) {
mMetricsManager =
- std::make_optional<MotionPredictorMetricsManager>(mModel->predictionInterval(),
+ std::make_optional<MotionPredictorMetricsManager>(mModel->config()
+ .predictionInterval,
mModel->outputLength());
}
mMetricsManager->onRecord(event);
@@ -184,8 +185,18 @@
const int64_t futureTime = timestamp + mPredictionTimestampOffsetNanos;
for (int i = 0; i < predictedR.size() && predictionTime <= futureTime; ++i) {
- // TODO(b/266747654): Stop predictions if confidence and/or predicted pressure are below
- // some thresholds.
+ if (predictedR[i] < mModel->config().distanceNoiseFloor) {
+ // Stop predicting when the predicted output is below the model's noise floor.
+ //
+ // We assume that all subsequent predictions in the batch are unreliable because later
+ // predictions are conditional on earlier predictions, and a state of noise is not a
+ // good basis for prediction.
+ //
+ // The UX trade-off is that this potentially sacrifices some predictions when the input
+ // device starts to speed up, but avoids producing noisy predictions as it slows down.
+ break;
+ }
+ // TODO(b/266747654): Stop predictions if confidence is < some threshold.
const TfLiteMotionPredictorSample::Point predictedPoint =
convertPrediction(axisFrom, axisTo, predictedR[i], predictedPhi[i]);
@@ -197,7 +208,7 @@
coords.setAxisValue(AMOTION_EVENT_AXIS_Y, predictedPoint.y);
coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, predictedPressure[i]);
- predictionTime += mModel->predictionInterval();
+ predictionTime += mModel->config().predictionInterval;
if (i == 0) {
hasPredictions = true;
prediction->initialize(InputEvent::nextId(), event.getDeviceId(), event.getSource(),