Update motion prediction model.

Input events with no movement (r = 0) are now included in the buffer
so that the model can accurately determine when the input device has
become stationary, and a noise floor is added to prevent spurious
predictions when this happens.

Benchmark results:
  Old:
    timeRecordAndPredict_mean (ns): 17990
    timeRecordAndPredict_median (ns): 18024
    timeRecordAndPredict_min (ns): 17606
    timeRecordAndPredict_standardDeviation: 345
  New:
    timeRecordAndPredict_mean (ns): 38394
    timeRecordAndPredict_median (ns): 38476
    timeRecordAndPredict_min (ns): 38083
    timeRecordAndPredict_standardDeviation: 187

Bug: 288354672
PiperOrigin-RevId: 549064247
Test: predictions are visible in the motionprediction test app
Test: atest CtsInputTestCases
Test: atest MotionPredictorBenchmark MotionPredictorTest
Test: atest --host libinput_tests
Change-Id: I6c3917591323d7117c4ee2e91abf6c6004178f19
diff --git a/data/etc/input/motion_predictor_config.xml b/data/etc/input/motion_predictor_config.xml
index 03dfd63..39772ae 100644
--- a/data/etc/input/motion_predictor_config.xml
+++ b/data/etc/input/motion_predictor_config.xml
@@ -16,5 +16,20 @@
 <motion-predictor>
   <!-- The time interval (ns) between the model's predictions. -->
   <prediction-interval>4166666</prediction-interval>  <!-- 4.167 ms = ~240 Hz -->
+  <!-- The noise floor (px) for predicted distances.
+
+       As the model is trained stochastically, there is some expected minimum
+       variability in its output. This can be a UX issue when the input device
+       is moving slowly and the variability is large relative to the magnitude
+       of the motion. In these cases, it is better to inhibit the prediction,
+       rather than show noisy predictions (and there is little benefit to
+       prediction anyway).
+
+       The value for this parameter should at least be close to the maximum
+       predicted distance when the input device is held stationary (i.e. the
+       expected minimum variability), and perhaps a little larger to capture
+       the UX issue mentioned above.
+  -->
+  <distance-noise-floor>0.2</distance-noise-floor>
 </motion-predictor>
 
diff --git a/data/etc/input/motion_predictor_model.tflite b/data/etc/input/motion_predictor_model.tflite
index 10b3c8b..45fc162 100644
--- a/data/etc/input/motion_predictor_model.tflite
+++ b/data/etc/input/motion_predictor_model.tflite
Binary files differ
diff --git a/include/input/TfLiteMotionPredictor.h b/include/input/TfLiteMotionPredictor.h
index fbd6026..2edc138 100644
--- a/include/input/TfLiteMotionPredictor.h
+++ b/include/input/TfLiteMotionPredictor.h
@@ -99,6 +99,14 @@
 // A TFLite model for generating motion predictions.
 class TfLiteMotionPredictorModel {
 public:
+    struct Config {
+        // The time between predictions.
+        nsecs_t predictionInterval = 0;
+        // The noise floor for predictions.
+        // Distances (r) less than this should be discarded as noise.
+        float distanceNoiseFloor = 0;
+    };
+
     // Creates a model from an encoded Flatbuffer model.
     static std::unique_ptr<TfLiteMotionPredictorModel> create();
 
@@ -110,8 +118,7 @@
     // Returns the length of the model's output buffers.
     size_t outputLength() const;
 
-    // Returns the time interval between predictions.
-    nsecs_t predictionInterval() const { return mPredictionInterval; }
+    const Config& config() const { return mConfig; }
 
     // Executes the model.
     // Returns true if the model successfully executed and the output tensors can be read.
@@ -132,7 +139,7 @@
 
 private:
     explicit TfLiteMotionPredictorModel(std::unique_ptr<android::base::MappedFile> model,
-                                        nsecs_t predictionInterval);
+                                        Config config);
 
     void allocateTensors();
     void attachInputTensors();
@@ -154,7 +161,7 @@
     std::unique_ptr<tflite::Interpreter> mInterpreter;
     tflite::SignatureRunner* mRunner = nullptr;
 
-    const nsecs_t mPredictionInterval = 0;
+    const Config mConfig = {};
 };
 
 } // namespace android
diff --git a/libs/input/MotionPredictor.cpp b/libs/input/MotionPredictor.cpp
index 68e6888..c2ea35c 100644
--- a/libs/input/MotionPredictor.cpp
+++ b/libs/input/MotionPredictor.cpp
@@ -138,7 +138,8 @@
     // Pass input event to the MetricsManager.
     if (!mMetricsManager) {
         mMetricsManager =
-                std::make_optional<MotionPredictorMetricsManager>(mModel->predictionInterval(),
+                std::make_optional<MotionPredictorMetricsManager>(mModel->config()
+                                                                          .predictionInterval,
                                                                   mModel->outputLength());
     }
     mMetricsManager->onRecord(event);
@@ -184,8 +185,18 @@
     const int64_t futureTime = timestamp + mPredictionTimestampOffsetNanos;
 
     for (int i = 0; i < predictedR.size() && predictionTime <= futureTime; ++i) {
-        // TODO(b/266747654): Stop predictions if confidence and/or predicted pressure are below
-        // some thresholds.
+        if (predictedR[i] < mModel->config().distanceNoiseFloor) {
+            // Stop predicting when the predicted output is below the model's noise floor.
+            //
+            // We assume that all subsequent predictions in the batch are unreliable because later
+            // predictions are conditional on earlier predictions, and a state of noise is not a
+            // good basis for prediction.
+            //
+            // The UX trade-off is that this potentially sacrifices some predictions when the input
+            // device starts to speed up, but avoids producing noisy predictions as it slows down.
+            break;
+        }
+        // TODO(b/266747654): Stop predictions if confidence is < some threshold.
 
         const TfLiteMotionPredictorSample::Point predictedPoint =
                 convertPrediction(axisFrom, axisTo, predictedR[i], predictedPhi[i]);
@@ -197,7 +208,7 @@
         coords.setAxisValue(AMOTION_EVENT_AXIS_Y, predictedPoint.y);
         coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, predictedPressure[i]);
 
-        predictionTime += mModel->predictionInterval();
+        predictionTime += mModel->config().predictionInterval;
         if (i == 0) {
             hasPredictions = true;
             prediction->initialize(InputEvent::nextId(), event.getDeviceId(), event.getSource(),
diff --git a/libs/input/TfLiteMotionPredictor.cpp b/libs/input/TfLiteMotionPredictor.cpp
index 9f4aaa8..5984b4d3 100644
--- a/libs/input/TfLiteMotionPredictor.cpp
+++ b/libs/input/TfLiteMotionPredictor.cpp
@@ -100,6 +100,16 @@
     return value;
 }
 
+float parseXMLFloat(const tinyxml2::XMLElement& configRoot, const char* elementName) {
+    const tinyxml2::XMLElement* element = configRoot.FirstChildElement(elementName);
+    LOG_ALWAYS_FATAL_IF(!element, "Could not find '%s' element", elementName);
+
+    float value = 0;
+    LOG_ALWAYS_FATAL_IF(element->QueryFloatText(&value) != tinyxml2::XML_SUCCESS,
+                        "Failed to parse %s: %s", elementName, element->GetText());
+    return value;
+}
+
 // A TFLite ErrorReporter that logs to logcat.
 class LoggingErrorReporter : public tflite::ErrorReporter {
 public:
@@ -152,6 +162,7 @@
                          ::tflite::ops::builtin::Register_CONCATENATION());
     resolver->AddBuiltin(::tflite::BuiltinOperator_FULLY_CONNECTED,
                          ::tflite::ops::builtin::Register_FULLY_CONNECTED());
+    resolver->AddBuiltin(::tflite::BuiltinOperator_GELU, ::tflite::ops::builtin::Register_GELU());
     return resolver;
 }
 
@@ -208,13 +219,7 @@
     float phi = 0;
     float orientation = 0;
 
-    // Ignore the sample if there is no movement. These samples can occur when there's change to a
-    // property other than the coordinates and pollute the input to the model.
-    if (r == 0) {
-        return;
-    }
-
-    if (!mAxisFrom) { // Second point.
+    if (!mAxisFrom && r > 0) { // Second point.
         // We can only determine the distance from the first point, and not any
         // angle. However, if the second point forms an axis, the orientation can
         // be transformed relative to that axis.
@@ -235,8 +240,10 @@
     }
 
     // Update the axis for the next point.
-    mAxisFrom = mAxisTo;
-    mAxisTo = sample;
+    if (r > 0) {
+        mAxisFrom = mAxisTo;
+        mAxisTo = sample;
+    }
 
     // Push the current sample onto the end of the input buffers.
     mInputR.pushBack(r);
@@ -272,15 +279,18 @@
     // Parse configuration file.
     const tinyxml2::XMLElement* configRoot = configDocument.FirstChildElement("motion-predictor");
     LOG_ALWAYS_FATAL_IF(!configRoot);
-    const nsecs_t predictionInterval = parseXMLInt64(*configRoot, "prediction-interval");
+    Config config{
+            .predictionInterval = parseXMLInt64(*configRoot, "prediction-interval"),
+            .distanceNoiseFloor = parseXMLFloat(*configRoot, "distance-noise-floor"),
+    };
 
     return std::unique_ptr<TfLiteMotionPredictorModel>(
-            new TfLiteMotionPredictorModel(std::move(modelBuffer), predictionInterval));
+            new TfLiteMotionPredictorModel(std::move(modelBuffer), std::move(config)));
 }
 
 TfLiteMotionPredictorModel::TfLiteMotionPredictorModel(
-        std::unique_ptr<android::base::MappedFile> model, nsecs_t predictionInterval)
-      : mFlatBuffer(std::move(model)), mPredictionInterval(predictionInterval) {
+        std::unique_ptr<android::base::MappedFile> model, Config config)
+      : mFlatBuffer(std::move(model)), mConfig(std::move(config)) {
     CHECK(mFlatBuffer);
     mErrorReporter = std::make_unique<LoggingErrorReporter>();
     mModel = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(mFlatBuffer->data(),
diff --git a/libs/input/tests/MotionPredictor_test.cpp b/libs/input/tests/MotionPredictor_test.cpp
index 7a62f5e..4ac7ae9 100644
--- a/libs/input/tests/MotionPredictor_test.cpp
+++ b/libs/input/tests/MotionPredictor_test.cpp
@@ -72,11 +72,20 @@
     ASSERT_FALSE(predictor.isPredictionAvailable(/*deviceId=*/1, AINPUT_SOURCE_TOUCHSCREEN));
 }
 
+TEST(MotionPredictorTest, StationaryNoiseFloor) {
+    MotionPredictor predictor(/*predictionTimestampOffsetNanos=*/1,
+                              []() { return true /*enable prediction*/; });
+    predictor.record(getMotionEvent(DOWN, 0, 1, 30ms));
+    predictor.record(getMotionEvent(MOVE, 0, 1, 35ms)); // No movement.
+    std::unique_ptr<MotionEvent> predicted = predictor.predict(40 * NSEC_PER_MSEC);
+    ASSERT_EQ(nullptr, predicted);
+}
+
 TEST(MotionPredictorTest, Offset) {
     MotionPredictor predictor(/*predictionTimestampOffsetNanos=*/1,
                               []() { return true /*enable prediction*/; });
     predictor.record(getMotionEvent(DOWN, 0, 1, 30ms));
-    predictor.record(getMotionEvent(MOVE, 0, 2, 35ms));
+    predictor.record(getMotionEvent(MOVE, 0, 5, 35ms)); // Move enough to overcome the noise floor.
     std::unique_ptr<MotionEvent> predicted = predictor.predict(40 * NSEC_PER_MSEC);
     ASSERT_NE(nullptr, predicted);
     ASSERT_GE(predicted->getEventTime(), 41);