TimeCheck: Use clock monotonic for elapsed time
The timeout deadline uses clock monotonic.
Update the elapsed time passed to the callbacks to
use clock monotonic as well. Clock monotonic counts only the
time the CPU is active (vs suspend) and is a better estimate
for performance monitoring.
Test: overnight stress test
Test: atest libmediautils_test
Test: atest timecheck_tests
Bug: 227594853
Merged-In: Ie35de689245a04ba50f4d4f04a10e2e0ded2293b
Change-Id: Ie35de689245a04ba50f4d4f04a10e2e0ded2293b
diff --git a/media/utils/include/mediautils/TimeCheck.h b/media/utils/include/mediautils/TimeCheck.h
index 038e7dd..8bee8d1 100644
--- a/media/utils/include/mediautils/TimeCheck.h
+++ b/media/utils/include/mediautils/TimeCheck.h
@@ -27,9 +27,23 @@
class TimeCheck {
public:
+
+ // Duration for TimeCheck is based on steady_clock, typically nanoseconds.
+ using Duration = std::chrono::steady_clock::duration;
+
+ // Duration for printing is in milliseconds, using float for additional precision.
+ using FloatMs = std::chrono::duration<float, std::milli>;
+
+ // OnTimerFunc is the callback function with 2 parameters.
+ // bool timeout (which is true when the TimeCheck object
+ // times out, false when the TimeCheck object is
+ // destroyed or leaves scope before the timer expires.)
+ // float elapsedMs (the elapsed time to this event).
using OnTimerFunc = std::function<void(bool /* timeout */, float /* elapsedMs */ )>;
// The default timeout is chosen to be less than system server watchdog timeout
+ // Note: kDefaultTimeOutMs should be no less than 2 seconds, otherwise spurious timeouts
+ // may occur with system suspend.
static constexpr uint32_t kDefaultTimeOutMs = 5000;
/**
@@ -44,24 +58,20 @@
* the deallocation.
*
* \param tag string associated with the TimeCheck object.
- * \param onTimer callback function with 2 parameters
- * bool timeout (which is true when the TimeCheck object
- * times out, false when the TimeCheck object is
- * destroyed or leaves scope before the timer expires.)
- * float elapsedMs (the elapsed time to this event).
+ * \param onTimer callback function with 2 parameters (described above in OnTimerFunc).
* The callback when timeout is true will be called on a different thread.
* This will cancel the callback on the destructor but is not guaranteed
* to block for callback completion if it is already in progress
* (for maximum concurrency and reduced deadlock potential), so use proper
* lifetime analysis (e.g. shared or weak pointers).
- * \param timeoutMs timeout in milliseconds.
+ * \param requestedTimeoutMs timeout in milliseconds.
* A zero timeout means no timeout is set -
* the callback is called only when
* the TimeCheck object is destroyed or leaves scope.
* \param crashOnTimeout true if the object issues an abort on timeout.
*/
explicit TimeCheck(std::string_view tag, OnTimerFunc&& onTimer = {},
- uint32_t timeoutMs = kDefaultTimeOutMs, bool crashOnTimeout = true);
+ uint32_t requestedTimeoutMs = kDefaultTimeOutMs, bool crashOnTimeout = true);
TimeCheck() = default;
// Remove copy constructors as there should only be one call to the destructor.
@@ -81,24 +91,32 @@
public:
template <typename S, typename F>
TimeCheckHandler(S&& _tag, F&& _onTimer, bool _crashOnTimeout,
- const std::chrono::system_clock::time_point& _startTime,
+ Duration _timeoutDuration,
+ std::chrono::system_clock::time_point _startSystemTime,
pid_t _tid)
: tag(std::forward<S>(_tag))
, onTimer(std::forward<F>(_onTimer))
, crashOnTimeout(_crashOnTimeout)
- , startTime(_startTime)
+ , timeoutDuration(_timeoutDuration)
+ , startSystemTime(_startSystemTime)
, tid(_tid)
{}
const FixedString62 tag;
const OnTimerFunc onTimer;
const bool crashOnTimeout;
- const std::chrono::system_clock::time_point startTime;
+ const Duration timeoutDuration;
+ const std::chrono::system_clock::time_point startSystemTime;
const pid_t tid;
void onCancel(TimerThread::Handle handle) const;
- void onTimeout() const;
+ void onTimeout(TimerThread::Handle handle) const;
};
+ // Returns a string that represents the timeout vs elapsed time,
+ // and diagnostics if there are any potential issues.
+ static std::string analyzeTimeouts(
+ float timeoutMs, float elapsedSteadyMs, float elapsedSystemMs);
+
static TimerThread& getTimeCheckThread();
static void accessAudioHalPids(std::vector<pid_t>* pids, bool update);
diff --git a/media/utils/include/mediautils/TimerThread.h b/media/utils/include/mediautils/TimerThread.h
index 349bffd..ff3ef4b 100644
--- a/media/utils/include/mediautils/TimerThread.h
+++ b/media/utils/include/mediautils/TimerThread.h
@@ -36,19 +36,93 @@
*/
class TimerThread {
public:
- // A Handle is a time_point that serves as a unique key. It is ordered.
+ // A Handle is a time_point that serves as a unique key to access a queued
+ // request to the TimerThread.
using Handle = std::chrono::steady_clock::time_point;
+ // Duration is based on steady_clock (typically nanoseconds)
+ // vs the system_clock duration (typically microseconds).
+ using Duration = std::chrono::steady_clock::duration;
+
static inline constexpr Handle INVALID_HANDLE =
std::chrono::steady_clock::time_point::min();
+ // Handle implementation details:
+ // A Handle represents the timer expiration time based on std::chrono::steady_clock
+ // (clock monotonic). This Handle is computed as now() + timeout.
+ //
+ // The lsb of the Handle time_point is adjusted to indicate whether there is
+ // a timeout action (1) or not (0).
+ //
+
+ template <size_t COUNT>
+ static constexpr bool is_power_of_2_v = COUNT > 0 && (COUNT & (COUNT - 1)) == 0;
+
+ template <size_t COUNT>
+ static constexpr size_t mask_from_count_v = COUNT - 1;
+
+ static constexpr size_t HANDLE_TYPES = 2;
+ // HANDLE_TYPES must be a power of 2.
+ static_assert(is_power_of_2_v<HANDLE_TYPES>);
+
+ // The handle types
+ enum class HANDLE_TYPE : size_t {
+ NO_TIMEOUT = 0,
+ TIMEOUT = 1,
+ };
+
+ static constexpr size_t HANDLE_TYPE_MASK = mask_from_count_v<HANDLE_TYPES>;
+
+ template <typename T>
+ static constexpr auto enum_as_value(T x) {
+ return static_cast<std::underlying_type_t<T>>(x);
+ }
+
+ static inline bool isNoTimeoutHandle(Handle handle) {
+ return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) ==
+ enum_as_value(HANDLE_TYPE::NO_TIMEOUT);
+ }
+
+ static inline bool isTimeoutHandle(Handle handle) {
+ return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) ==
+ enum_as_value(HANDLE_TYPE::TIMEOUT);
+ }
+
+ // Returns a unique Handle that doesn't exist in the container.
+ template <size_t MAX_TYPED_HANDLES, size_t HANDLE_TYPE_AS_VALUE, typename C, typename T>
+ static Handle getUniqueHandleForHandleType_l(C container, T timeout) {
+ static_assert(MAX_TYPED_HANDLES > 0 && HANDLE_TYPE_AS_VALUE < MAX_TYPED_HANDLES
+ && is_power_of_2_v<MAX_TYPED_HANDLES>,
+ " handles must be power of two");
+
+ // Our initial handle is the deadline as computed from steady_clock.
+ auto deadline = std::chrono::steady_clock::now() + timeout;
+
+ // We adjust the lsbs by the minimum increment to have the correct
+ // HANDLE_TYPE in the least significant bits.
+ auto remainder = deadline.time_since_epoch().count() & HANDLE_TYPE_MASK;
+ size_t offset = HANDLE_TYPE_AS_VALUE > remainder ? HANDLE_TYPE_AS_VALUE - remainder :
+ MAX_TYPED_HANDLES + HANDLE_TYPE_AS_VALUE - remainder;
+ deadline += std::chrono::steady_clock::duration(offset);
+
+ // To avoid key collisions, advance the handle by MAX_TYPED_HANDLES (the modulus factor)
+ // until the key is unique.
+ while (container.find(deadline) != container.end()) {
+ deadline += std::chrono::steady_clock::duration(MAX_TYPED_HANDLES);
+ }
+ return deadline;
+ }
+
+ // TimerCallback invoked on timeout or cancel.
+ using TimerCallback = std::function<void(Handle)>;
+
/**
* Schedules a task to be executed in the future (`timeout` duration from now).
*
* \param tag string associated with the task. This need not be unique,
* as the Handle returned is used for cancelling.
* \param func callback function that is invoked at the timeout.
- * \param timeout timeout duration which is converted to milliseconds with at
+ * \param timeoutDuration timeout duration which is converted to milliseconds with at
* least 45 integer bits.
* A timeout of 0 (or negative) means the timer never expires
* so func() is never called. These tasks are stored internally
@@ -56,7 +130,7 @@
* \returns a handle that can be used for cancellation.
*/
Handle scheduleTask(
- std::string_view tag, std::function<void()>&& func, std::chrono::milliseconds timeout);
+ std::string_view tag, TimerCallback&& func, Duration timeoutDuration);
/**
* Tracks a task that shows up on toString() until cancelled.
@@ -131,8 +205,8 @@
// To minimize movement of data, we pass around shared_ptrs to Requests.
// These are allocated and deallocated outside of the lock.
struct Request {
- Request(const std::chrono::system_clock::time_point& _scheduled,
- const std::chrono::system_clock::time_point& _deadline,
+ Request(std::chrono::system_clock::time_point _scheduled,
+ std::chrono::system_clock::time_point _deadline,
pid_t _tid,
std::string_view _tag)
: scheduled(_scheduled)
@@ -172,15 +246,17 @@
mRequestQueue GUARDED_BY(mRQMutex);
};
- // A storage map of tasks without timeouts. There is no std::function<void()>
+ // A storage map of tasks without timeouts. There is no TimerCallback
// required, it just tracks the tasks with the tag, scheduled time and the tid.
// These tasks show up on a pendingToString() until manually cancelled.
class NoTimeoutMap {
- // This a counter of the requests that have no timeout (timeout == 0).
- std::atomic<size_t> mNoTimeoutRequests{};
-
mutable std::mutex mNTMutex;
std::map<Handle, std::shared_ptr<const Request>> mMap GUARDED_BY(mNTMutex);
+ Handle getUniqueHandle_l() REQUIRES(mNTMutex) {
+ return getUniqueHandleForHandleType_l<
+ HANDLE_TYPES, enum_as_value(HANDLE_TYPE::NO_TIMEOUT)>(
+ mMap, Duration{} /* timeout */);
+ }
public:
bool isValidHandle(Handle handle) const; // lock free
@@ -195,11 +271,11 @@
// This class is thread-safe.
class MonitorThread {
mutable std::mutex mMutex;
- mutable std::condition_variable mCond;
+ mutable std::condition_variable mCond GUARDED_BY(mMutex);
// Ordered map of requests based on time of deadline.
//
- std::map<Handle, std::pair<std::shared_ptr<const Request>, std::function<void()>>>
+ std::map<Handle, std::pair<std::shared_ptr<const Request>, TimerCallback>>
mMonitorRequests GUARDED_BY(mMutex);
RequestQueue& mTimeoutQueue; // locked internally, added to when request times out.
@@ -212,14 +288,18 @@
std::thread mThread;
void threadFunc();
- Handle getUniqueHandle_l(std::chrono::milliseconds timeout) REQUIRES(mMutex);
+ Handle getUniqueHandle_l(Duration timeout) REQUIRES(mMutex) {
+ return getUniqueHandleForHandleType_l<
+ HANDLE_TYPES, enum_as_value(HANDLE_TYPE::TIMEOUT)>(
+ mMonitorRequests, timeout);
+ }
public:
MonitorThread(RequestQueue &timeoutQueue);
~MonitorThread();
- Handle add(std::shared_ptr<const Request> request, std::function<void()>&& func,
- std::chrono::milliseconds timeout);
+ Handle add(std::shared_ptr<const Request> request, TimerCallback&& func,
+ Duration timeout);
std::shared_ptr<const Request> remove(Handle handle);
void copyRequests(std::vector<std::shared_ptr<const Request>>& requests) const;
};
@@ -256,16 +336,6 @@
std::vector<std::shared_ptr<const Request>> getPendingRequests() const;
- // A no-timeout request is represented by a handles at the end of steady_clock time,
- // counting down by the number of no timeout requests previously requested.
- // We manage them on the NoTimeoutMap, but conceptually they could be scheduled
- // on the MonitorThread because those time handles won't expire in
- // the lifetime of the device.
- static inline Handle getIndexedHandle(size_t index) {
- return std::chrono::time_point<std::chrono::steady_clock>::max() -
- std::chrono::time_point<std::chrono::steady_clock>::duration(index);
- }
-
static constexpr size_t kRetiredQueueMax = 16;
RequestQueue mRetiredQueue{kRetiredQueueMax}; // locked internally