Start pulling bits of FastMixer up to FastThread

Change-Id: I4c6f7b8f88fcf107bb29ee6432feecd4ab6554d2
diff --git a/services/audioflinger/FastThread.cpp b/services/audioflinger/FastThread.cpp
new file mode 100644
index 0000000..8a216b3
--- /dev/null
+++ b/services/audioflinger/FastThread.cpp
@@ -0,0 +1,348 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "FastThread"
+//#define LOG_NDEBUG 0
+
+#define ATRACE_TAG ATRACE_TAG_AUDIO
+
+#include "Configuration.h"
+#include <utils/Log.h>
+extern "C" {
+#include "../private/bionic_futex.h"
+}
+#include <utils/Trace.h>
+#include "FastThread.h"
+
+#define FAST_DEFAULT_NS    999999999L   // ~1 sec: default time to sleep
+#define FAST_HOT_IDLE_NS     1000000L   // 1 ms: time to sleep while hot idling
+#define MIN_WARMUP_CYCLES          2    // minimum number of loop cycles to wait for warmup
+#define MAX_WARMUP_CYCLES         10    // maximum number of loop cycles to wait for warmup
+
+namespace android {
+
+FastThread::FastThread() : Thread(false /*canCallJava*/),
+    // re-initialized to &initial by subclass constructor
+     previous(NULL), current(NULL),
+    /* oldTs({0, 0}), */
+    oldTsValid(false),
+    sleepNs(-1),
+    periodNs(0),
+    underrunNs(0),
+    overrunNs(0),
+    forceNs(0),
+    warmupNs(0),
+    // re-initialized to &dummyDumpState by subclass constructor
+    mDummyDumpState(NULL),
+    dumpState(NULL),
+    ignoreNextOverrun(true),
+#ifdef FAST_MIXER_STATISTICS
+    // oldLoad
+    oldLoadValid(false),
+    bounds(0),
+    full(false),
+    // tcu
+#endif
+    coldGen(0),
+    isWarm(false),
+    /* measuredWarmupTs({0, 0}), */
+    warmupCycles(0),
+    // dummyLogWriter
+    logWriter(&dummyLogWriter),
+    timestampStatus(INVALID_OPERATION),
+
+    command(FastThreadState::INITIAL),
+#if 0
+    frameCount(0),
+#endif
+    attemptedWrite(false)
+{
+    oldTs.tv_sec = 0;
+    oldTs.tv_nsec = 0;
+    measuredWarmupTs.tv_sec = 0;
+    measuredWarmupTs.tv_nsec = 0;
+}
+
+FastThread::~FastThread()
+{
+}
+
+bool FastThread::threadLoop()
+{
+    for (;;) {
+
+        // either nanosleep, sched_yield, or busy wait
+        if (sleepNs >= 0) {
+            if (sleepNs > 0) {
+                ALOG_ASSERT(sleepNs < 1000000000);
+                const struct timespec req = {0, sleepNs};
+                nanosleep(&req, NULL);
+            } else {
+                sched_yield();
+            }
+        }
+        // default to long sleep for next cycle
+        sleepNs = FAST_DEFAULT_NS;
+
+        // poll for state change
+        const FastThreadState *next = poll();
+        if (next == NULL) {
+            // continue to use the default initial state until a real state is available
+            // FIXME &initial not available, should save address earlier
+            //ALOG_ASSERT(current == &initial && previous == &initial);
+            next = current;
+        }
+
+        command = next->mCommand;
+        if (next != current) {
+
+            // As soon as possible of learning of a new dump area, start using it
+            dumpState = next->mDumpState != NULL ? next->mDumpState : mDummyDumpState;
+            logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter;
+            setLog(logWriter);
+
+            // We want to always have a valid reference to the previous (non-idle) state.
+            // However, the state queue only guarantees access to current and previous states.
+            // So when there is a transition from a non-idle state into an idle state, we make a
+            // copy of the last known non-idle state so it is still available on return from idle.
+            // The possible transitions are:
+            //  non-idle -> non-idle    update previous from current in-place
+            //  non-idle -> idle        update previous from copy of current
+            //  idle     -> idle        don't update previous
+            //  idle     -> non-idle    don't update previous
+            if (!(current->mCommand & FastThreadState::IDLE)) {
+                if (command & FastThreadState::IDLE) {
+                    onIdle();
+                    oldTsValid = false;
+#ifdef FAST_MIXER_STATISTICS
+                    oldLoadValid = false;
+#endif
+                    ignoreNextOverrun = true;
+                }
+                previous = current;
+            }
+            current = next;
+        }
+#if !LOG_NDEBUG
+        next = NULL;    // not referenced again
+#endif
+
+        dumpState->mCommand = command;
+
+        // << current, previous, command, dumpState >>
+
+        switch (command) {
+        case FastThreadState::INITIAL:
+        case FastThreadState::HOT_IDLE:
+            sleepNs = FAST_HOT_IDLE_NS;
+            continue;
+        case FastThreadState::COLD_IDLE:
+            // only perform a cold idle command once
+            // FIXME consider checking previous state and only perform if previous != COLD_IDLE
+            if (current->mColdGen != coldGen) {
+                int32_t *coldFutexAddr = current->mColdFutexAddr;
+                ALOG_ASSERT(coldFutexAddr != NULL);
+                int32_t old = android_atomic_dec(coldFutexAddr);
+                if (old <= 0) {
+                    __futex_syscall4(coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
+                }
+                int policy = sched_getscheduler(0);
+                if (!(policy == SCHED_FIFO || policy == SCHED_RR)) {
+                    ALOGE("did not receive expected priority boost");
+                }
+                // This may be overly conservative; there could be times that the normal mixer
+                // requests such a brief cold idle that it doesn't require resetting this flag.
+                isWarm = false;
+                measuredWarmupTs.tv_sec = 0;
+                measuredWarmupTs.tv_nsec = 0;
+                warmupCycles = 0;
+                sleepNs = -1;
+                coldGen = current->mColdGen;
+#ifdef FAST_MIXER_STATISTICS
+                bounds = 0;
+                full = false;
+#endif
+                oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
+                timestampStatus = INVALID_OPERATION;
+            } else {
+                sleepNs = FAST_HOT_IDLE_NS;
+            }
+            continue;
+        case FastThreadState::EXIT:
+            onExit();
+            return false;
+        default:
+            LOG_ALWAYS_FATAL_IF(!isSubClassCommand(command));
+            break;
+        }
+
+        // there is a non-idle state available to us; did the state change?
+        if (current != previous) {
+            onStateChange();
+#if 1   // FIXME shouldn't need this
+            // only process state change once
+            previous = current;
+#endif
+        }
+
+        // do work using current state here
+        attemptedWrite = false;
+        onWork();
+
+        // To be exactly periodic, compute the next sleep time based on current time.
+        // This code doesn't have long-term stability when the sink is non-blocking.
+        // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
+        struct timespec newTs;
+        int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
+        if (rc == 0) {
+            //logWriter->logTimestamp(newTs);
+            if (oldTsValid) {
+                time_t sec = newTs.tv_sec - oldTs.tv_sec;
+                long nsec = newTs.tv_nsec - oldTs.tv_nsec;
+                ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
+                        "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
+                        oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
+                if (nsec < 0) {
+                    --sec;
+                    nsec += 1000000000;
+                }
+                // To avoid an initial underrun on fast tracks after exiting standby,
+                // do not start pulling data from tracks and mixing until warmup is complete.
+                // Warmup is considered complete after the earlier of:
+                //      MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
+                //      MAX_WARMUP_CYCLES write() attempts.
+                // This is overly conservative, but to get better accuracy requires a new HAL API.
+                if (!isWarm && attemptedWrite) {
+                    measuredWarmupTs.tv_sec += sec;
+                    measuredWarmupTs.tv_nsec += nsec;
+                    if (measuredWarmupTs.tv_nsec >= 1000000000) {
+                        measuredWarmupTs.tv_sec++;
+                        measuredWarmupTs.tv_nsec -= 1000000000;
+                    }
+                    ++warmupCycles;
+                    if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
+                            (warmupCycles >= MAX_WARMUP_CYCLES)) {
+                        isWarm = true;
+                        dumpState->mMeasuredWarmupTs = measuredWarmupTs;
+                        dumpState->mWarmupCycles = warmupCycles;
+                    }
+                }
+                sleepNs = -1;
+                if (isWarm) {
+                    if (sec > 0 || nsec > underrunNs) {
+                        ATRACE_NAME("underrun");
+                        // FIXME only log occasionally
+                        ALOGV("underrun: time since last cycle %d.%03ld sec",
+                                (int) sec, nsec / 1000000L);
+                        dumpState->mUnderruns++;
+                        ignoreNextOverrun = true;
+                    } else if (nsec < overrunNs) {
+                        if (ignoreNextOverrun) {
+                            ignoreNextOverrun = false;
+                        } else {
+                            // FIXME only log occasionally
+                            ALOGV("overrun: time since last cycle %d.%03ld sec",
+                                    (int) sec, nsec / 1000000L);
+                            dumpState->mOverruns++;
+                        }
+                        // This forces a minimum cycle time. It:
+                        //  - compensates for an audio HAL with jitter due to sample rate conversion
+                        //  - works with a variable buffer depth audio HAL that never pulls at a
+                        //    rate < than overrunNs per buffer.
+                        //  - recovers from overrun immediately after underrun
+                        // It doesn't work with a non-blocking audio HAL.
+                        sleepNs = forceNs - nsec;
+                    } else {
+                        ignoreNextOverrun = false;
+                    }
+                }
+#ifdef FAST_MIXER_STATISTICS
+                if (isWarm) {
+                    // advance the FIFO queue bounds
+                    size_t i = bounds & (dumpState->mSamplingN - 1);
+                    bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
+                    if (full) {
+                        bounds += 0x10000;
+                    } else if (!(bounds & (dumpState->mSamplingN - 1))) {
+                        full = true;
+                    }
+                    // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
+                    uint32_t monotonicNs = nsec;
+                    if (sec > 0 && sec < 4) {
+                        monotonicNs += sec * 1000000000;
+                    }
+                    // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
+                    uint32_t loadNs = 0;
+                    struct timespec newLoad;
+                    rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
+                    if (rc == 0) {
+                        if (oldLoadValid) {
+                            sec = newLoad.tv_sec - oldLoad.tv_sec;
+                            nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
+                            if (nsec < 0) {
+                                --sec;
+                                nsec += 1000000000;
+                            }
+                            loadNs = nsec;
+                            if (sec > 0 && sec < 4) {
+                                loadNs += sec * 1000000000;
+                            }
+                        } else {
+                            // first time through the loop
+                            oldLoadValid = true;
+                        }
+                        oldLoad = newLoad;
+                    }
+#ifdef CPU_FREQUENCY_STATISTICS
+                    // get the absolute value of CPU clock frequency in kHz
+                    int cpuNum = sched_getcpu();
+                    uint32_t kHz = tcu.getCpukHz(cpuNum);
+                    kHz = (kHz << 4) | (cpuNum & 0xF);
+#endif
+                    // save values in FIFO queues for dumpsys
+                    // these stores #1, #2, #3 are not atomic with respect to each other,
+                    // or with respect to store #4 below
+                    dumpState->mMonotonicNs[i] = monotonicNs;
+                    dumpState->mLoadNs[i] = loadNs;
+#ifdef CPU_FREQUENCY_STATISTICS
+                    dumpState->mCpukHz[i] = kHz;
+#endif
+                    // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
+                    // the newest open & oldest closed halves are atomic with respect to each other
+                    dumpState->mBounds = bounds;
+                    ATRACE_INT("cycle_ms", monotonicNs / 1000000);
+                    ATRACE_INT("load_us", loadNs / 1000);
+                }
+#endif
+            } else {
+                // first time through the loop
+                oldTsValid = true;
+                sleepNs = periodNs;
+                ignoreNextOverrun = true;
+            }
+            oldTs = newTs;
+        } else {
+            // monotonic clock is broken
+            oldTsValid = false;
+            sleepNs = periodNs;
+        }
+
+    }   // for (;;)
+
+    // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
+}
+
+}   // namespace android