Merge "more mainline-related code to module-specific directories"
diff --git a/media/utils/TimeCheck.cpp b/media/utils/TimeCheck.cpp
index e53d70f..6823f4f 100644
--- a/media/utils/TimeCheck.cpp
+++ b/media/utils/TimeCheck.cpp
@@ -139,22 +139,24 @@
     return getTimeCheckThread().toString();
 }
 
-TimeCheck::TimeCheck(std::string_view tag, OnTimerFunc&& onTimer, uint32_t timeoutMs,
-        bool crashOnTimeout)
+TimeCheck::TimeCheck(std::string_view tag, OnTimerFunc&& onTimer, Duration requestedTimeoutDuration,
+        Duration secondChanceDuration, bool crashOnTimeout)
     : mTimeCheckHandler{ std::make_shared<TimeCheckHandler>(
-            tag, std::move(onTimer), crashOnTimeout,
-            std::chrono::system_clock::now(), gettid()) }
-    , mTimerHandle(timeoutMs == 0
+            tag, std::move(onTimer), crashOnTimeout, requestedTimeoutDuration,
+            secondChanceDuration, std::chrono::system_clock::now(), gettid()) }
+    , mTimerHandle(requestedTimeoutDuration.count() == 0
+              /* for TimeCheck we don't consider a non-zero secondChanceDuration here */
               ? getTimeCheckThread().trackTask(mTimeCheckHandler->tag)
               : getTimeCheckThread().scheduleTask(
                       mTimeCheckHandler->tag,
                       // Pass in all the arguments by value to this task for safety.
                       // The thread could call the callback before the constructor is finished.
                       // The destructor is not blocked on callback.
-                      [ timeCheckHandler = mTimeCheckHandler ] {
-                          timeCheckHandler->onTimeout();
+                      [ timeCheckHandler = mTimeCheckHandler ](TimerThread::Handle timerHandle) {
+                          timeCheckHandler->onTimeout(timerHandle);
                       },
-                      std::chrono::milliseconds(timeoutMs))) {}
+                      requestedTimeoutDuration,
+                      secondChanceDuration)) {}
 
 TimeCheck::~TimeCheck() {
     if (mTimeCheckHandler) {
@@ -162,23 +164,77 @@
     }
 }
 
+/* static */
+std::string TimeCheck::analyzeTimeouts(
+        float requestedTimeoutMs, float elapsedSteadyMs, float elapsedSystemMs) {
+    // Track any OS clock issues with suspend.
+    // It is possible that the elapsedSystemMs is much greater than elapsedSteadyMs if
+    // a suspend occurs; however, we always expect the timeout ms should always be slightly
+    // less than the elapsed steady ms regardless of whether a suspend occurs or not.
+
+    std::string s("Timeout ms ");
+    s.append(std::to_string(requestedTimeoutMs))
+        .append(" elapsed steady ms ").append(std::to_string(elapsedSteadyMs))
+        .append(" elapsed system ms ").append(std::to_string(elapsedSystemMs));
+
+    // Is there something unusual?
+    static constexpr float TOLERANCE_CONTEXT_SWITCH_MS = 200.f;
+
+    if (requestedTimeoutMs > elapsedSteadyMs || requestedTimeoutMs > elapsedSystemMs) {
+        s.append("\nError: early expiration - "
+                "requestedTimeoutMs should be less than elapsed time");
+    }
+
+    if (elapsedSteadyMs > elapsedSystemMs + TOLERANCE_CONTEXT_SWITCH_MS) {
+        s.append("\nWarning: steady time should not advance faster than system time");
+    }
+
+    // This has been found in suspend stress testing.
+    if (elapsedSteadyMs > requestedTimeoutMs + TOLERANCE_CONTEXT_SWITCH_MS) {
+        s.append("\nWarning: steady time significantly exceeds timeout "
+                "- possible thread stall or aborted suspend");
+    }
+
+    // This has been found in suspend stress testing.
+    if (elapsedSystemMs > requestedTimeoutMs + TOLERANCE_CONTEXT_SWITCH_MS) {
+        s.append("\nInformation: system time significantly exceeds timeout "
+                "- possible suspend");
+    }
+    return s;
+}
+
+// To avoid any potential race conditions, the timer handle
+// (expiration = clock steady start + timeout) is passed into the callback.
 void TimeCheck::TimeCheckHandler::onCancel(TimerThread::Handle timerHandle) const
 {
     if (TimeCheck::getTimeCheckThread().cancelTask(timerHandle) && onTimer) {
-        const std::chrono::system_clock::time_point endTime = std::chrono::system_clock::now();
-        onTimer(false /* timeout */,
-                std::chrono::duration_cast<std::chrono::duration<float, std::milli>>(
-                        endTime - startTime).count());
+        const std::chrono::steady_clock::time_point endSteadyTime =
+                std::chrono::steady_clock::now();
+        const float elapsedSteadyMs = std::chrono::duration_cast<FloatMs>(
+                endSteadyTime - timerHandle + timeoutDuration).count();
+        // send the elapsed steady time for statistics.
+        onTimer(false /* timeout */, elapsedSteadyMs);
     }
 }
 
-void TimeCheck::TimeCheckHandler::onTimeout() const
+// To avoid any potential race conditions, the timer handle
+// (expiration = clock steady start + timeout) is passed into the callback.
+void TimeCheck::TimeCheckHandler::onTimeout(TimerThread::Handle timerHandle) const
 {
-    const std::chrono::system_clock::time_point endTime = std::chrono::system_clock::now();
+    const std::chrono::steady_clock::time_point endSteadyTime = std::chrono::steady_clock::now();
+    const std::chrono::system_clock::time_point endSystemTime = std::chrono::system_clock::now();
+    // timerHandle incorporates the timeout
+    const float elapsedSteadyMs = std::chrono::duration_cast<FloatMs>(
+            endSteadyTime - (timerHandle - timeoutDuration)).count();
+    const float elapsedSystemMs = std::chrono::duration_cast<FloatMs>(
+            endSystemTime - startSystemTime).count();
+    const float requestedTimeoutMs = std::chrono::duration_cast<FloatMs>(
+            timeoutDuration).count();
+    const float secondChanceMs = std::chrono::duration_cast<FloatMs>(
+            secondChanceDuration).count();
+
     if (onTimer) {
-        onTimer(true /* timeout */,
-                std::chrono::duration_cast<std::chrono::duration<float, std::milli>>(
-                        endTime - startTime).count());
+        onTimer(true /* timeout */, elapsedSteadyMs);
     }
 
     if (!crashOnTimeout) return;
@@ -208,8 +264,10 @@
     // Create abort message string - caution: this can be very large.
     const std::string abortMessage = std::string("TimeCheck timeout for ")
             .append(tag)
-            .append(" scheduled ").append(formatTime(startTime))
+            .append(" scheduled ").append(formatTime(startSystemTime))
             .append(" on thread ").append(std::to_string(tid)).append("\n")
+            .append(analyzeTimeouts(requestedTimeoutMs + secondChanceMs,
+                    elapsedSteadyMs, elapsedSystemMs)).append("\n")
             .append(halPids).append("\n")
             .append(summary);
 
@@ -241,7 +299,7 @@
                     } else {
                         stats->event(safeMethodName.asStringView(), elapsedMs);
                     }
-            }, 0 /* timeoutMs */);
+            }, {} /* timeoutDuration */, {} /* secondChanceDuration */, false /* crashOnTimeout */);
 }
 
 }  // namespace android::mediautils
diff --git a/media/utils/TimerThread.cpp b/media/utils/TimerThread.cpp
index 09783ed..5e58a3d 100644
--- a/media/utils/TimerThread.cpp
+++ b/media/utils/TimerThread.cpp
@@ -23,28 +23,35 @@
 
 #include <mediautils/MediaUtilsDelayed.h>
 #include <mediautils/TimerThread.h>
+#include <utils/Log.h>
 #include <utils/ThreadDefs.h>
 
+using namespace std::chrono_literals;
+
 namespace android::mediautils {
 
 extern std::string formatTime(std::chrono::system_clock::time_point t);
 extern std::string_view timeSuffix(std::string_view time1, std::string_view time2);
 
 TimerThread::Handle TimerThread::scheduleTask(
-        std::string_view tag, std::function<void()>&& func, std::chrono::milliseconds timeout) {
+        std::string_view tag, TimerCallback&& func,
+        Duration timeoutDuration, Duration secondChanceDuration) {
     const auto now = std::chrono::system_clock::now();
-    auto request = std::make_shared<const Request>(now, now + timeout, gettid(), tag);
-    return mMonitorThread.add(std::move(request), std::move(func), timeout);
+    auto request = std::make_shared<const Request>(now, now +
+            std::chrono::duration_cast<std::chrono::system_clock::duration>(timeoutDuration),
+            secondChanceDuration, gettid(), tag);
+    return mMonitorThread.add(std::move(request), std::move(func), timeoutDuration);
 }
 
 TimerThread::Handle TimerThread::trackTask(std::string_view tag) {
     const auto now = std::chrono::system_clock::now();
-    auto request = std::make_shared<const Request>(now, now, gettid(), tag);
+    auto request = std::make_shared<const Request>(now, now,
+            Duration{} /* secondChanceDuration */, gettid(), tag);
     return mNoTimeoutMap.add(std::move(request));
 }
 
 bool TimerThread::cancelTask(Handle handle) {
-    std::shared_ptr<const Request> request = mNoTimeoutMap.isValidHandle(handle) ?
+    std::shared_ptr<const Request> request = isNoTimeoutHandle(handle) ?
              mNoTimeoutMap.remove(handle) : mMonitorThread.remove(handle);
     if (!request) return false;
     mRetiredQueue.add(std::move(request));
@@ -82,6 +89,8 @@
 
     return std::string("now ")
             .append(formatTime(std::chrono::system_clock::now()))
+            .append("\nsecondChanceCount ")
+            .append(std::to_string(mMonitorThread.getSecondChanceCount()))
             .append(analysisSummary)
             .append("\ntimeout [ ")
             .append(requestsToString(timeoutRequests))
@@ -125,12 +134,12 @@
     std::vector<std::shared_ptr<const Request>> pendingExact;
     std::vector<std::shared_ptr<const Request>> pendingPossible;
 
-    // We look at pending requests that were scheduled no later than kDuration
+    // We look at pending requests that were scheduled no later than kPendingDuration
     // after the timeout request. This prevents false matches with calls
     // that naturally block for a short period of time
     // such as HAL write() and read().
     //
-    auto constexpr kDuration = std::chrono::milliseconds(1000);
+    constexpr Duration kPendingDuration = 1000ms;
     for (const auto& pending : pendingRequests) {
         // If the pending tid is the same as timeout tid, problem identified.
         if (pending->tid == timeout->tid) {
@@ -139,7 +148,7 @@
         }
 
         // if the pending tid is scheduled within time limit
-        if (pending->scheduled - timeout->scheduled < kDuration) {
+        if (pending->scheduled - timeout->scheduled < kPendingDuration) {
             pendingPossible.emplace_back(pending);
         }
     }
@@ -239,15 +248,11 @@
     }
 }
 
-bool TimerThread::NoTimeoutMap::isValidHandle(Handle handle) const {
-    return handle > getIndexedHandle(mNoTimeoutRequests);
-}
-
 TimerThread::Handle TimerThread::NoTimeoutMap::add(std::shared_ptr<const Request> request) {
     std::lock_guard lg(mNTMutex);
     // A unique handle is obtained by mNoTimeoutRequests.fetch_add(1),
     // This need not be under a lock, but we do so anyhow.
-    const Handle handle = getIndexedHandle(mNoTimeoutRequests++);
+    const Handle handle = getUniqueHandle_l();
     mMap[handle] = request;
     return handle;
 }
@@ -269,16 +274,6 @@
     }
 }
 
-TimerThread::Handle TimerThread::MonitorThread::getUniqueHandle_l(
-        std::chrono::milliseconds timeout) {
-    // To avoid key collisions, advance by 1 tick until the key is unique.
-    auto deadline = std::chrono::steady_clock::now() + timeout;
-    for (; mMonitorRequests.find(deadline) != mMonitorRequests.end();
-         deadline += std::chrono::steady_clock::duration(1))
-        ;
-    return deadline;
-}
-
 TimerThread::MonitorThread::MonitorThread(RequestQueue& timeoutQueue)
         : mTimeoutQueue(timeoutQueue)
         , mThread([this] { threadFunc(); }) {
@@ -298,24 +293,78 @@
 void TimerThread::MonitorThread::threadFunc() {
     std::unique_lock _l(mMutex);
     while (!mShouldExit) {
+        Handle nextDeadline = INVALID_HANDLE;
+        Handle now = INVALID_HANDLE;
         if (!mMonitorRequests.empty()) {
-            Handle nextDeadline = mMonitorRequests.begin()->first;
-            if (nextDeadline < std::chrono::steady_clock::now()) {
+            nextDeadline = mMonitorRequests.begin()->first;
+            now = std::chrono::steady_clock::now();
+            if (nextDeadline < now) {
+                auto node = mMonitorRequests.extract(mMonitorRequests.begin());
                 // Deadline has expired, handle the request.
+                auto secondChanceDuration = node.mapped().first->secondChanceDuration;
+                if (secondChanceDuration.count() != 0) {
+                    // We now apply the second chance duration to find the clock
+                    // monotonic second deadline.  The unique key is then the
+                    // pair<second_deadline, first_deadline>.
+                    //
+                    // The second chance prevents a false timeout should there be
+                    // any clock monotonic advancement during suspend.
+                    auto newHandle = now + secondChanceDuration;
+                    ALOGD("%s: TimeCheck second chance applied for %s",
+                            __func__, node.mapped().first->tag.c_str()); // should be rare event.
+                    mSecondChanceRequests.emplace_hint(mSecondChanceRequests.end(),
+                            std::make_pair(newHandle, nextDeadline),
+                            std::move(node.mapped()));
+                    // increment second chance counter.
+                    mSecondChanceCount.fetch_add(1 /* arg */, std::memory_order_relaxed);
+                } else {
+                    {
+                        _l.unlock();
+                        // We add Request to retired queue early so that it can be dumped out.
+                        mTimeoutQueue.add(std::move(node.mapped().first));
+                        node.mapped().second(nextDeadline);
+                        // Caution: we don't hold lock when we call TimerCallback,
+                        // but this is the timeout case!  We will crash soon,
+                        // maybe before returning.
+                        // anything left over is released here outside lock.
+                    }
+                    // reacquire the lock - if something was added, we loop immediately to check.
+                    _l.lock();
+                }
+                // always process expiring monitor requests first.
+                continue;
+            }
+        }
+        // now process any second chance requests.
+        if (!mSecondChanceRequests.empty()) {
+            Handle secondDeadline = mSecondChanceRequests.begin()->first.first;
+            if (now == INVALID_HANDLE) now = std::chrono::steady_clock::now();
+            if (secondDeadline < now) {
+                auto node = mSecondChanceRequests.extract(mSecondChanceRequests.begin());
                 {
-                    auto node = mMonitorRequests.extract(mMonitorRequests.begin());
                     _l.unlock();
                     // We add Request to retired queue early so that it can be dumped out.
                     mTimeoutQueue.add(std::move(node.mapped().first));
-                    node.mapped().second(); // Caution: we don't hold lock here - but do we care?
-                                            // this is the timeout case!  We will crash soon,
-                                            // maybe before returning.
-                    // anything left over is released here outside lock.
+                    const Handle originalHandle = node.key().second;
+                    node.mapped().second(originalHandle);
+                    // Caution: we don't hold lock when we call TimerCallback.
+                    // This is benign issue - we permit concurrent operations
+                    // while in the callback to the MonitorQueue.
+                    //
+                    // Anything left over is released here outside lock.
                 }
                 // reacquire the lock - if something was added, we loop immediately to check.
                 _l.lock();
                 continue;
             }
+            // update the deadline.
+            if (nextDeadline == INVALID_HANDLE) {
+                nextDeadline = secondDeadline;
+            } else {
+                nextDeadline = std::min(nextDeadline, secondDeadline);
+            }
+        }
+        if (nextDeadline != INVALID_HANDLE) {
             mCond.wait_until(_l, nextDeadline);
         } else {
             mCond.wait(_l);
@@ -324,26 +373,39 @@
 }
 
 TimerThread::Handle TimerThread::MonitorThread::add(
-        std::shared_ptr<const Request> request, std::function<void()>&& func,
-        std::chrono::milliseconds timeout) {
+        std::shared_ptr<const Request> request, TimerCallback&& func, Duration timeout) {
     std::lock_guard _l(mMutex);
     const Handle handle = getUniqueHandle_l(timeout);
-    mMonitorRequests.emplace(handle, std::make_pair(std::move(request), std::move(func)));
+    mMonitorRequests.emplace_hint(mMonitorRequests.end(),
+            handle, std::make_pair(std::move(request), std::move(func)));
     mCond.notify_all();
     return handle;
 }
 
 std::shared_ptr<const TimerThread::Request> TimerThread::MonitorThread::remove(Handle handle) {
+    std::pair<std::shared_ptr<const Request>, TimerCallback> data;
     std::unique_lock ul(mMutex);
-    const auto it = mMonitorRequests.find(handle);
-    if (it == mMonitorRequests.end()) {
-        return {};
+    if (const auto it = mMonitorRequests.find(handle);
+        it != mMonitorRequests.end()) {
+        data = std::move(it->second);
+        mMonitorRequests.erase(it);
+        ul.unlock();  // manually release lock here so func (data.second)
+                      // is released outside of lock.
+        return data.first;  // request
     }
-    std::shared_ptr<const TimerThread::Request> request = std::move(it->second.first);
-    std::function<void()> func = std::move(it->second.second);
-    mMonitorRequests.erase(it);
-    ul.unlock();  // manually release lock here so func is released outside of lock.
-    return request;
+
+    // this check is O(N), but since the second chance requests are ordered
+    // in terms of earliest expiration time, we would expect better than average results.
+    for (auto it = mSecondChanceRequests.begin(); it != mSecondChanceRequests.end(); ++it) {
+        if (it->first.second == handle) {
+            data = std::move(it->second);
+            mSecondChanceRequests.erase(it);
+            ul.unlock();  // manually release lock here so func (data.second)
+                          // is released outside of lock.
+            return data.first; // request
+        }
+    }
+    return {};
 }
 
 void TimerThread::MonitorThread::copyRequests(
@@ -352,6 +414,13 @@
     for (const auto &[deadline, monitorpair] : mMonitorRequests) {
         requests.emplace_back(monitorpair.first);
     }
+    // we combine the second map with the first map - this is
+    // everything that is pending on the monitor thread.
+    // The second map will be older than the first map so this
+    // is in order.
+    for (const auto &[deadline, monitorpair] : mSecondChanceRequests) {
+        requests.emplace_back(monitorpair.first);
+    }
 }
 
 }  // namespace android::mediautils
diff --git a/media/utils/fuzzers/TimeCheckFuzz.cpp b/media/utils/fuzzers/TimeCheckFuzz.cpp
index 7966469..65b2885 100644
--- a/media/utils/fuzzers/TimeCheckFuzz.cpp
+++ b/media/utils/fuzzers/TimeCheckFuzz.cpp
@@ -48,7 +48,9 @@
     std::string name = data_provider.ConsumeRandomLengthString(kMaxStringLen);
 
     // 3. The constructor, which is fuzzed here:
-    android::mediautils::TimeCheck timeCheck(name.c_str(), {} /* onTimer */, timeoutMs);
+    android::mediautils::TimeCheck timeCheck(name.c_str(), {} /* onTimer */,
+            std::chrono::milliseconds(timeoutMs),
+            {} /* secondChanceDuration */, true /* crashOnTimeout */);
     // We will leave some buffer to avoid sleeping too long
     uint8_t sleep_amount_ms = data_provider.ConsumeIntegralInRange<uint8_t>(0, timeoutMs / 2);
 
diff --git a/media/utils/include/mediautils/TimeCheck.h b/media/utils/include/mediautils/TimeCheck.h
index 038e7dd..bdb5337 100644
--- a/media/utils/include/mediautils/TimeCheck.h
+++ b/media/utils/include/mediautils/TimeCheck.h
@@ -16,6 +16,7 @@
 
 #pragma once
 
+#include <chrono>
 #include <vector>
 
 #include <mediautils/TimerThread.h>
@@ -27,10 +28,33 @@
 
 class TimeCheck {
   public:
+
+    // Duration for TimeCheck is based on steady_clock, typically nanoseconds.
+    using Duration = std::chrono::steady_clock::duration;
+
+    // Duration for printing is in milliseconds, using float for additional precision.
+    using FloatMs = std::chrono::duration<float, std::milli>;
+
+    // OnTimerFunc is the callback function with 2 parameters.
+    //  bool timeout  (which is true when the TimeCheck object
+    //                 times out, false when the TimeCheck object is
+    //                 destroyed or leaves scope before the timer expires.)
+    //  float elapsedMs (the elapsed time to this event).
     using OnTimerFunc = std::function<void(bool /* timeout */, float /* elapsedMs */ )>;
 
     // The default timeout is chosen to be less than system server watchdog timeout
-    static constexpr uint32_t kDefaultTimeOutMs = 5000;
+    // Note: kDefaultTimeOutMs should be no less than 2 seconds, otherwise spurious timeouts
+    // may occur with system suspend.
+    static constexpr TimeCheck::Duration kDefaultTimeoutDuration = std::chrono::milliseconds(3000);
+
+    // Due to suspend abort not incrementing the monotonic clock,
+    // we allow another second chance timeout after the first timeout expires.
+    //
+    // The total timeout is therefore kDefaultTimeoutDuration + kDefaultSecondChanceDuration,
+    // and the result is more stable when the monotonic clock increments during suspend.
+    //
+    static constexpr TimeCheck::Duration kDefaultSecondChanceDuration =
+            std::chrono::milliseconds(2000);
 
     /**
      * TimeCheck is a RAII object which will notify a callback
@@ -44,24 +68,24 @@
      * the deallocation.
      *
      * \param tag       string associated with the TimeCheck object.
-     * \param onTimer   callback function with 2 parameters
-     *                      bool timeout  (which is true when the TimeCheck object
-     *                                    times out, false when the TimeCheck object is
-     *                                    destroyed or leaves scope before the timer expires.)
-     *                      float elapsedMs (the elapsed time to this event).
+     * \param onTimer   callback function with 2 parameters (described above in OnTimerFunc).
      *                  The callback when timeout is true will be called on a different thread.
      *                  This will cancel the callback on the destructor but is not guaranteed
      *                  to block for callback completion if it is already in progress
      *                  (for maximum concurrency and reduced deadlock potential), so use proper
      *                  lifetime analysis (e.g. shared or weak pointers).
-     * \param timeoutMs timeout in milliseconds.
+     * \param requestedTimeoutDuration timeout in milliseconds.
      *                  A zero timeout means no timeout is set -
      *                  the callback is called only when
      *                  the TimeCheck object is destroyed or leaves scope.
+     * \param secondChanceDuration additional milliseconds to wait if the first timeout expires.
+     *                  This is used to prevent false timeouts if the steady (monotonic)
+     *                  clock advances on aborted suspend.
      * \param crashOnTimeout true if the object issues an abort on timeout.
      */
-    explicit TimeCheck(std::string_view tag, OnTimerFunc&& onTimer = {},
-            uint32_t timeoutMs = kDefaultTimeOutMs, bool crashOnTimeout = true);
+    explicit TimeCheck(std::string_view tag, OnTimerFunc&& onTimer,
+            Duration requestedTimeoutDuration, Duration secondChanceDuration,
+            bool crashOnTimeout);
 
     TimeCheck() = default;
     // Remove copy constructors as there should only be one call to the destructor.
@@ -81,24 +105,34 @@
     public:
         template <typename S, typename F>
         TimeCheckHandler(S&& _tag, F&& _onTimer, bool _crashOnTimeout,
-            const std::chrono::system_clock::time_point& _startTime,
+            Duration _timeoutDuration, Duration _secondChanceDuration,
+            std::chrono::system_clock::time_point _startSystemTime,
             pid_t _tid)
             : tag(std::forward<S>(_tag))
             , onTimer(std::forward<F>(_onTimer))
             , crashOnTimeout(_crashOnTimeout)
-            , startTime(_startTime)
+            , timeoutDuration(_timeoutDuration)
+            , secondChanceDuration(_secondChanceDuration)
+            , startSystemTime(_startSystemTime)
             , tid(_tid)
             {}
         const FixedString62 tag;
         const OnTimerFunc onTimer;
         const bool crashOnTimeout;
-        const std::chrono::system_clock::time_point startTime;
+        const Duration timeoutDuration;
+        const Duration secondChanceDuration;
+        const std::chrono::system_clock::time_point startSystemTime;
         const pid_t tid;
 
         void onCancel(TimerThread::Handle handle) const;
-        void onTimeout() const;
+        void onTimeout(TimerThread::Handle handle) const;
     };
 
+    // Returns a string that represents the timeout vs elapsed time,
+    // and diagnostics if there are any potential issues.
+    static std::string analyzeTimeouts(
+            float timeoutMs, float elapsedSteadyMs, float elapsedSystemMs);
+
     static TimerThread& getTimeCheckThread();
     static void accessAudioHalPids(std::vector<pid_t>* pids, bool update);
 
diff --git a/media/utils/include/mediautils/TimerThread.h b/media/utils/include/mediautils/TimerThread.h
index 349bffd..c76fa7d 100644
--- a/media/utils/include/mediautils/TimerThread.h
+++ b/media/utils/include/mediautils/TimerThread.h
@@ -36,19 +36,93 @@
  */
 class TimerThread {
   public:
-    // A Handle is a time_point that serves as a unique key.  It is ordered.
+    // A Handle is a time_point that serves as a unique key to access a queued
+    // request to the TimerThread.
     using Handle = std::chrono::steady_clock::time_point;
 
+    // Duration is based on steady_clock (typically nanoseconds)
+    // vs the system_clock duration (typically microseconds).
+    using Duration = std::chrono::steady_clock::duration;
+
     static inline constexpr Handle INVALID_HANDLE =
             std::chrono::steady_clock::time_point::min();
 
+    // Handle implementation details:
+    // A Handle represents the timer expiration time based on std::chrono::steady_clock
+    // (clock monotonic).  This Handle is computed as now() + timeout.
+    //
+    // The lsb of the Handle time_point is adjusted to indicate whether there is
+    // a timeout action (1) or not (0).
+    //
+
+    template <size_t COUNT>
+    static constexpr bool is_power_of_2_v = COUNT > 0 && (COUNT & (COUNT - 1)) == 0;
+
+    template <size_t COUNT>
+    static constexpr size_t mask_from_count_v = COUNT - 1;
+
+    static constexpr size_t HANDLE_TYPES = 2;
+    // HANDLE_TYPES must be a power of 2.
+    static_assert(is_power_of_2_v<HANDLE_TYPES>);
+
+    // The handle types
+    enum class HANDLE_TYPE : size_t {
+        NO_TIMEOUT = 0,
+        TIMEOUT = 1,
+    };
+
+    static constexpr size_t HANDLE_TYPE_MASK = mask_from_count_v<HANDLE_TYPES>;
+
+    template <typename T>
+    static constexpr auto enum_as_value(T x) {
+        return static_cast<std::underlying_type_t<T>>(x);
+    }
+
+    static inline bool isNoTimeoutHandle(Handle handle) {
+        return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) ==
+                enum_as_value(HANDLE_TYPE::NO_TIMEOUT);
+    }
+
+    static inline bool isTimeoutHandle(Handle handle) {
+        return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) ==
+                enum_as_value(HANDLE_TYPE::TIMEOUT);
+    }
+
+    // Returns a unique Handle that doesn't exist in the container.
+    template <size_t MAX_TYPED_HANDLES, size_t HANDLE_TYPE_AS_VALUE, typename C, typename T>
+    static Handle getUniqueHandleForHandleType_l(C container, T timeout) {
+        static_assert(MAX_TYPED_HANDLES > 0 && HANDLE_TYPE_AS_VALUE < MAX_TYPED_HANDLES
+                && is_power_of_2_v<MAX_TYPED_HANDLES>,
+                " handles must be power of two");
+
+        // Our initial handle is the deadline as computed from steady_clock.
+        auto deadline = std::chrono::steady_clock::now() + timeout;
+
+        // We adjust the lsbs by the minimum increment to have the correct
+        // HANDLE_TYPE in the least significant bits.
+        auto remainder = deadline.time_since_epoch().count() & HANDLE_TYPE_MASK;
+        size_t offset = HANDLE_TYPE_AS_VALUE > remainder ? HANDLE_TYPE_AS_VALUE - remainder :
+                     MAX_TYPED_HANDLES + HANDLE_TYPE_AS_VALUE - remainder;
+        deadline += std::chrono::steady_clock::duration(offset);
+
+        // To avoid key collisions, advance the handle by MAX_TYPED_HANDLES (the modulus factor)
+        // until the key is unique.
+        while (container.find(deadline) != container.end()) {
+            deadline += std::chrono::steady_clock::duration(MAX_TYPED_HANDLES);
+        }
+        return deadline;
+    }
+
+    // TimerCallback invoked on timeout or cancel.
+    using TimerCallback = std::function<void(Handle)>;
+
     /**
      * Schedules a task to be executed in the future (`timeout` duration from now).
      *
      * \param tag     string associated with the task.  This need not be unique,
      *                as the Handle returned is used for cancelling.
      * \param func    callback function that is invoked at the timeout.
-     * \param timeout timeout duration which is converted to milliseconds with at
+     * \param timeoutDuration timeout duration which is converted to milliseconds with at
      *                least 45 integer bits.
      *                A timeout of 0 (or negative) means the timer never expires
      *                so func() is never called. These tasks are stored internally
@@ -56,7 +130,8 @@
      * \returns       a handle that can be used for cancellation.
      */
     Handle scheduleTask(
-            std::string_view tag, std::function<void()>&& func, std::chrono::milliseconds timeout);
+            std::string_view tag, TimerCallback&& func,
+            Duration timeoutDuration, Duration secondChanceDuration);
 
     /**
      * Tracks a task that shows up on toString() until cancelled.
@@ -130,24 +205,30 @@
   private:
     // To minimize movement of data, we pass around shared_ptrs to Requests.
     // These are allocated and deallocated outside of the lock.
+    // TODO(b/243839867) consider options to merge Request with the
+    // TimeCheck::TimeCheckHandler struct.
     struct Request {
-        Request(const std::chrono::system_clock::time_point& _scheduled,
-                const std::chrono::system_clock::time_point& _deadline,
+        Request(std::chrono::system_clock::time_point _scheduled,
+                std::chrono::system_clock::time_point _deadline,
+                Duration _secondChanceDuration,
                 pid_t _tid,
                 std::string_view _tag)
             : scheduled(_scheduled)
             , deadline(_deadline)
+            , secondChanceDuration(_secondChanceDuration)
             , tid(_tid)
             , tag(_tag)
             {}
 
         const std::chrono::system_clock::time_point scheduled;
-        const std::chrono::system_clock::time_point deadline; // deadline := scheduled + timeout
+        const std::chrono::system_clock::time_point deadline; // deadline := scheduled
+                                                              // + timeoutDuration
+                                                              // + secondChanceDuration
                                                               // if deadline == scheduled, no
                                                               // timeout, task not executed.
+        Duration secondChanceDuration;
         const pid_t tid;
         const FixedString62 tag;
-
         std::string toString() const;
     };
 
@@ -172,15 +253,17 @@
                 mRequestQueue GUARDED_BY(mRQMutex);
     };
 
-    // A storage map of tasks without timeouts.  There is no std::function<void()>
+    // A storage map of tasks without timeouts.  There is no TimerCallback
     // required, it just tracks the tasks with the tag, scheduled time and the tid.
     // These tasks show up on a pendingToString() until manually cancelled.
     class NoTimeoutMap {
-        // This a counter of the requests that have no timeout (timeout == 0).
-        std::atomic<size_t> mNoTimeoutRequests{};
-
         mutable std::mutex mNTMutex;
         std::map<Handle, std::shared_ptr<const Request>> mMap GUARDED_BY(mNTMutex);
+        Handle getUniqueHandle_l() REQUIRES(mNTMutex) {
+            return getUniqueHandleForHandleType_l<
+                    HANDLE_TYPES, enum_as_value(HANDLE_TYPE::NO_TIMEOUT)>(
+                mMap, Duration{} /* timeout */);
+        }
 
       public:
         bool isValidHandle(Handle handle) const; // lock free
@@ -194,14 +277,26 @@
     // call on timeout.
     // This class is thread-safe.
     class MonitorThread {
+        std::atomic<size_t> mSecondChanceCount{};
         mutable std::mutex mMutex;
-        mutable std::condition_variable mCond;
+        mutable std::condition_variable mCond GUARDED_BY(mMutex);
 
         // Ordered map of requests based on time of deadline.
         //
-        std::map<Handle, std::pair<std::shared_ptr<const Request>, std::function<void()>>>
+        std::map<Handle, std::pair<std::shared_ptr<const Request>, TimerCallback>>
                 mMonitorRequests GUARDED_BY(mMutex);
 
+        // Due to monotonic/steady clock inaccuracies during suspend,
+        // we allow an additional second chance waiting time to prevent
+        // false removal.
+
+        // This mSecondChanceRequests queue is almost always empty.
+        // Using a pair with the original handle allows lookup and keeps
+        // the Key unique.
+        std::map<std::pair<Handle /* new */, Handle /* original */>,
+                std::pair<std::shared_ptr<const Request>, TimerCallback>>
+                        mSecondChanceRequests GUARDED_BY(mMutex);
+
         RequestQueue& mTimeoutQueue; // locked internally, added to when request times out.
 
         // Worker thread variables
@@ -212,16 +307,23 @@
         std::thread mThread;
 
         void threadFunc();
-        Handle getUniqueHandle_l(std::chrono::milliseconds timeout) REQUIRES(mMutex);
+        Handle getUniqueHandle_l(Duration timeout) REQUIRES(mMutex) {
+            return getUniqueHandleForHandleType_l<
+                    HANDLE_TYPES, enum_as_value(HANDLE_TYPE::TIMEOUT)>(
+                mMonitorRequests, timeout);
+        }
 
       public:
         MonitorThread(RequestQueue &timeoutQueue);
         ~MonitorThread();
 
-        Handle add(std::shared_ptr<const Request> request, std::function<void()>&& func,
-                std::chrono::milliseconds timeout);
+        Handle add(std::shared_ptr<const Request> request, TimerCallback&& func,
+                Duration timeout);
         std::shared_ptr<const Request> remove(Handle handle);
         void copyRequests(std::vector<std::shared_ptr<const Request>>& requests) const;
+        size_t getSecondChanceCount() const {
+            return mSecondChanceCount.load(std::memory_order_relaxed);
+        }
     };
 
     // Analysis contains info deduced by analysisTimeout().
@@ -256,16 +358,6 @@
 
     std::vector<std::shared_ptr<const Request>> getPendingRequests() const;
 
-    // A no-timeout request is represented by a handles at the end of steady_clock time,
-    // counting down by the number of no timeout requests previously requested.
-    // We manage them on the NoTimeoutMap, but conceptually they could be scheduled
-    // on the MonitorThread because those time handles won't expire in
-    // the lifetime of the device.
-    static inline Handle getIndexedHandle(size_t index) {
-        return std::chrono::time_point<std::chrono::steady_clock>::max() -
-                    std::chrono::time_point<std::chrono::steady_clock>::duration(index);
-    }
-
     static constexpr size_t kRetiredQueueMax = 16;
     RequestQueue mRetiredQueue{kRetiredQueueMax};  // locked internally
 
diff --git a/media/utils/tests/TimerThread-test.cpp b/media/utils/tests/TimerThread-test.cpp
index 1fbe894..8a92a26 100644
--- a/media/utils/tests/TimerThread-test.cpp
+++ b/media/utils/tests/TimerThread-test.cpp
@@ -33,10 +33,28 @@
     return std::count(s.begin(), s.end(), c);
 }
 
-TEST(TimerThread, Basic) {
+
+// Split msec time between timeout and second chance time
+// This tests expiration times weighted between timeout and the second chance time.
+#define DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(msec, frac) \
+    std::chrono::milliseconds(int((msec) * (frac)) + 1), \
+    std::chrono::milliseconds(int((msec) * (1.f - (frac))))
+
+// The TimerThreadTest is parameterized on a fraction between 0.f and 1.f which
+// is how the total timeout time is split between the first timeout and the second chance time.
+//
+class TimerThreadTest : public ::testing::TestWithParam<float> {
+protected:
+
+static void testBasic() {
+    const auto frac = GetParam();
+
     std::atomic<bool> taskRan = false;
     TimerThread thread;
-    thread.scheduleTask("Basic", [&taskRan] { taskRan = true; }, 100ms);
+    TimerThread::Handle handle =
+            thread.scheduleTask("Basic", [&taskRan](TimerThread::Handle handle __unused) {
+                    taskRan = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(100, frac));
+    ASSERT_TRUE(TimerThread::isTimeoutHandle(handle));
     std::this_thread::sleep_for(100ms - kJitter);
     ASSERT_FALSE(taskRan);
     std::this_thread::sleep_for(2 * kJitter);
@@ -46,11 +64,15 @@
     ASSERT_EQ(0ul, countChars(thread.retiredToString(), REQUEST_START));
 }
 
-TEST(TimerThread, Cancel) {
+static void testCancel() {
+    const auto frac = GetParam();
+
     std::atomic<bool> taskRan = false;
     TimerThread thread;
     TimerThread::Handle handle =
-            thread.scheduleTask("Cancel", [&taskRan] { taskRan = true; }, 100ms);
+            thread.scheduleTask("Cancel", [&taskRan](TimerThread::Handle handle __unused) {
+                    taskRan = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(100, frac));
+    ASSERT_TRUE(TimerThread::isTimeoutHandle(handle));
     std::this_thread::sleep_for(100ms - kJitter);
     ASSERT_FALSE(taskRan);
     ASSERT_TRUE(thread.cancelTask(handle));
@@ -61,11 +83,17 @@
     ASSERT_EQ(1ul, countChars(thread.retiredToString(), REQUEST_START));
 }
 
-TEST(TimerThread, CancelAfterRun) {
+static void testCancelAfterRun() {
+    const auto frac = GetParam();
+
     std::atomic<bool> taskRan = false;
     TimerThread thread;
     TimerThread::Handle handle =
-            thread.scheduleTask("CancelAfterRun", [&taskRan] { taskRan = true; }, 100ms);
+            thread.scheduleTask("CancelAfterRun",
+                    [&taskRan](TimerThread::Handle handle __unused) {
+                            taskRan = true; },
+                            DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(100, frac));
+    ASSERT_TRUE(TimerThread::isTimeoutHandle(handle));
     std::this_thread::sleep_for(100ms + kJitter);
     ASSERT_TRUE(taskRan); //  timed-out called.
     ASSERT_FALSE(thread.cancelTask(handle));
@@ -74,77 +102,70 @@
     ASSERT_EQ(0ul, countChars(thread.retiredToString(), REQUEST_START));
 }
 
-TEST(TimerThread, MultipleTasks) {
+static void testMultipleTasks() {
+    const auto frac = GetParam();
+
     std::array<std::atomic<bool>, 6> taskRan{};
     TimerThread thread;
 
     auto startTime = std::chrono::steady_clock::now();
 
-    thread.scheduleTask("0", [&taskRan] { taskRan[0] = true; }, 300ms);
-    thread.scheduleTask("1", [&taskRan] { taskRan[1] = true; }, 100ms);
-    thread.scheduleTask("2", [&taskRan] { taskRan[2] = true; }, 200ms);
-    thread.scheduleTask("3", [&taskRan] { taskRan[3] = true; }, 400ms);
-    auto handle4 = thread.scheduleTask("4", [&taskRan] { taskRan[4] = true; }, 200ms);
-    thread.scheduleTask("5", [&taskRan] { taskRan[5] = true; }, 200ms);
+    thread.scheduleTask("0", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[0] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(300, frac));
+    thread.scheduleTask("1", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[1] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(100, frac));
+    thread.scheduleTask("2", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[2] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(200, frac));
+    thread.scheduleTask("3", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[3] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(400, frac));
+    auto handle4 = thread.scheduleTask("4", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[4] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(200, frac));
+    thread.scheduleTask("5", [&taskRan](TimerThread::Handle handle __unused) {
+            taskRan[5] = true; }, DISTRIBUTE_TIMEOUT_SECONDCHANCE_MS_FRAC(200, frac));
 
     // 6 tasks pending
     ASSERT_EQ(6ul, countChars(thread.pendingToString(), REQUEST_START));
     // 0 tasks completed
     ASSERT_EQ(0ul, countChars(thread.retiredToString(), REQUEST_START));
 
+    // None of the tasks are expected to have finished at the start.
+    std::array<std::atomic<bool>, 6> expected{};
+
     // Task 1 should trigger around 100ms.
     std::this_thread::sleep_until(startTime + 100ms - kJitter);
-    ASSERT_FALSE(taskRan[0]);
-    ASSERT_FALSE(taskRan[1]);
-    ASSERT_FALSE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_FALSE(taskRan[5]);
+
+    ASSERT_EQ(expected, taskRan);
+
 
     std::this_thread::sleep_until(startTime + 100ms + kJitter);
-    ASSERT_FALSE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_FALSE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_FALSE(taskRan[5]);
+
+    expected[1] = true;
+    ASSERT_EQ(expected, taskRan);
 
     // Cancel task 4 before it gets a chance to run.
     thread.cancelTask(handle4);
 
     // Tasks 2 and 5 should trigger around 200ms.
     std::this_thread::sleep_until(startTime + 200ms - kJitter);
-    ASSERT_FALSE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_FALSE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_FALSE(taskRan[5]);
+
+    ASSERT_EQ(expected, taskRan);
+
 
     std::this_thread::sleep_until(startTime + 200ms + kJitter);
-    ASSERT_FALSE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_TRUE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_TRUE(taskRan[5]);
+
+    expected[2] = true;
+    expected[5] = true;
+    ASSERT_EQ(expected, taskRan);
 
     // Task 0 should trigger around 300ms.
     std::this_thread::sleep_until(startTime + 300ms - kJitter);
-    ASSERT_FALSE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_TRUE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_TRUE(taskRan[5]);
+
+    ASSERT_EQ(expected, taskRan);
 
     std::this_thread::sleep_until(startTime + 300ms + kJitter);
-    ASSERT_TRUE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_TRUE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_TRUE(taskRan[5]);
+
+    expected[0] = true;
+    ASSERT_EQ(expected, taskRan);
 
     // 1 task pending
     ASSERT_EQ(1ul, countChars(thread.pendingToString(), REQUEST_START));
@@ -154,24 +175,17 @@
 
     // Task 3 should trigger around 400ms.
     std::this_thread::sleep_until(startTime + 400ms - kJitter);
-    ASSERT_TRUE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_TRUE(taskRan[2]);
-    ASSERT_FALSE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_TRUE(taskRan[5]);
+
+    ASSERT_EQ(expected, taskRan);
 
     // 4 tasks called on timeout and 1 cancelled
     ASSERT_EQ(4ul, countChars(thread.timeoutToString(), REQUEST_START));
     ASSERT_EQ(1ul, countChars(thread.retiredToString(), REQUEST_START));
 
     std::this_thread::sleep_until(startTime + 400ms + kJitter);
-    ASSERT_TRUE(taskRan[0]);
-    ASSERT_TRUE(taskRan[1]);
-    ASSERT_TRUE(taskRan[2]);
-    ASSERT_TRUE(taskRan[3]);
-    ASSERT_FALSE(taskRan[4]);
-    ASSERT_TRUE(taskRan[5]);
+
+    expected[3] = true;
+    ASSERT_EQ(expected, taskRan);
 
     // 0 tasks pending
     ASSERT_EQ(0ul, countChars(thread.pendingToString(), REQUEST_START));
@@ -180,6 +194,30 @@
     ASSERT_EQ(1ul, countChars(thread.retiredToString(), REQUEST_START));
 }
 
+}; // class TimerThreadTest
+
+TEST_P(TimerThreadTest, Basic) {
+    testBasic();
+}
+
+TEST_P(TimerThreadTest, Cancel) {
+    testCancel();
+}
+
+TEST_P(TimerThreadTest, CancelAfterRun) {
+    testCancelAfterRun();
+}
+
+TEST_P(TimerThreadTest, MultipleTasks) {
+    testMultipleTasks();
+}
+
+INSTANTIATE_TEST_CASE_P(
+        TimerThread,
+        TimerThreadTest,
+        ::testing::Values(0.f, 0.5f, 1.f)
+        );
+
 TEST(TimerThread, TrackedTasks) {
     TimerThread thread;
 
@@ -187,6 +225,10 @@
     auto handle1 = thread.trackTask("1");
     auto handle2 = thread.trackTask("2");
 
+    ASSERT_TRUE(TimerThread::isNoTimeoutHandle(handle0));
+    ASSERT_TRUE(TimerThread::isNoTimeoutHandle(handle1));
+    ASSERT_TRUE(TimerThread::isNoTimeoutHandle(handle2));
+
     // 3 tasks pending
     ASSERT_EQ(3ul, countChars(thread.pendingToString(), REQUEST_START));
     // 0 tasks retired
@@ -210,6 +252,7 @@
 
     // Add another tracked task.
     auto handle3 = thread.trackTask("3");
+    ASSERT_TRUE(TimerThread::isNoTimeoutHandle(handle3));
 
     // 2 tasks pending
     ASSERT_EQ(2ul, countChars(thread.pendingToString(), REQUEST_START));
diff --git a/media/utils/tests/timecheck_tests.cpp b/media/utils/tests/timecheck_tests.cpp
index 6ebf44d..8236174 100644
--- a/media/utils/tests/timecheck_tests.cpp
+++ b/media/utils/tests/timecheck_tests.cpp
@@ -39,7 +39,7 @@
             timeoutRegistered = timeout;
             elapsedMsRegistered = elapsedMs;
             event = true;
-        }, 1000 /* msec */, false /* crash */);
+        }, 1000ms /* timeoutDuration */, {} /* secondChanceDuration */, false /* crash */);
     }
     ASSERT_TRUE(event);
     ASSERT_FALSE(timeoutRegistered);
@@ -58,7 +58,7 @@
             timeoutRegistered = timeout;
             elapsedMsRegistered = elapsedMs;
             event = true; // store-release, must be last.
-        }, 1 /* msec */, false /* crash */);
+        }, 1ms /* timeoutDuration */, {} /* secondChanceDuration */, false /* crash */);
         std::this_thread::sleep_for(100ms);
     }
     ASSERT_TRUE(event); // load-acquire, must be first.
@@ -69,4 +69,4 @@
 // Note: We do not test TimeCheck crash because TimeCheck is multithreaded and the
 // EXPECT_EXIT() signal catching is imperfect due to the gtest fork.
 
-} // namespace
\ No newline at end of file
+} // namespace
diff --git a/services/audioflinger/AudioFlinger.cpp b/services/audioflinger/AudioFlinger.cpp
index 7f0fc1f..27b6790 100644
--- a/services/audioflinger/AudioFlinger.cpp
+++ b/services/audioflinger/AudioFlinger.cpp
@@ -4633,7 +4633,9 @@
         } else {
             getIAudioFlingerStatistics().event(code, elapsedMs);
         }
-    });
+    }, mediautils::TimeCheck::kDefaultTimeoutDuration,
+    mediautils::TimeCheck::kDefaultSecondChanceDuration,
+    true /* crashOnTimeout */);
 
     // Make sure we connect to Audio Policy Service before calling into AudioFlinger:
     //  - AudioFlinger can call into Audio Policy Service with its global mutex held
diff --git a/services/audioflinger/Effects.cpp b/services/audioflinger/Effects.cpp
index 193e270..fc3c07f 100644
--- a/services/audioflinger/Effects.cpp
+++ b/services/audioflinger/Effects.cpp
@@ -1817,7 +1817,7 @@
         } else {
             getIEffectStatistics().event(code, elapsedMs);
         }
-    }, 0 /* timeoutMs */);
+    }, {} /* timeoutDuration */, {} /* secondChanceDuration */, false /* crashOnTimeout */);
     return BnEffect::onTransact(code, data, reply, flags);
 }
 
diff --git a/services/audiopolicy/engineconfigurable/tools/Android.bp b/services/audiopolicy/engineconfigurable/tools/Android.bp
index 40efb3d..77ea507 100644
--- a/services/audiopolicy/engineconfigurable/tools/Android.bp
+++ b/services/audiopolicy/engineconfigurable/tools/Android.bp
@@ -37,7 +37,7 @@
 // Tools for audio policy engine criterion type configuration file
 //
 python_binary_host {
-    name: "buildPolicyCriterionTypes.py",
+    name: "buildPolicyCriterionTypes",
     main: "buildPolicyCriterionTypes.py",
     srcs: [
         "buildPolicyCriterionTypes.py",
@@ -47,10 +47,10 @@
 
 genrule_defaults {
     name: "buildpolicycriteriontypesrule",
-    tools: ["buildPolicyCriterionTypes.py"],
+    tools: ["buildPolicyCriterionTypes"],
     cmd: "cp $(locations :audio_policy_configuration_files) $(genDir)/. && " +
          "cp $(location :audio_policy_configuration_top_file) $(genDir)/audio_policy_configuration.xml && " +
-         "$(location buildPolicyCriterionTypes.py) " +
+         "$(location buildPolicyCriterionTypes) " +
          " --androidaudiobaseheader $(location :libaudio_system_audio_base) " +
          " --androidaudiocommonbaseheader $(location :libaudio_system_audio_common_base) " +
          "--audiopolicyconfigurationfile $(genDir)/audio_policy_configuration.xml " +
@@ -72,7 +72,7 @@
 // Tools for audio policy engine parameter framework configurable domains
 //
 python_binary_host {
-    name: "domainGeneratorPolicy.py",
+    name: "domainGeneratorPolicy",
     main: "domainGeneratorPolicy.py",
     srcs: [
         "domainGeneratorPolicy.py",
@@ -91,13 +91,13 @@
 genrule_defaults {
     name: "domaingeneratorpolicyrule",
     tools: [
-        "domainGeneratorPolicy.py",
+        "domainGeneratorPolicy",
         "domainGeneratorConnector",
     ],
     cmd: "mkdir -p $(genDir)/Structure/Policy && " +
          "cp $(locations :audio_policy_pfw_structure_files) $(genDir)/Structure/Policy && " +
          "cp $(location :audio_policy_pfw_toplevel) $(genDir)/top_level && " +
-         "$(location domainGeneratorPolicy.py) " +
+         "$(location domainGeneratorPolicy) " +
          "--validate " +
          "--domain-generator-tool $(location domainGeneratorConnector) " +
          "--toplevel-config $(genDir)/top_level " +
@@ -121,7 +121,7 @@
 // Tools for policy parameter-framework product strategies structure file generation
 //
 python_binary_host {
-    name: "buildStrategiesStructureFile.py",
+    name: "buildStrategiesStructureFile",
     main: "buildStrategiesStructureFile.py",
     srcs: [
         "buildStrategiesStructureFile.py",
@@ -131,9 +131,9 @@
 
 genrule_defaults {
     name: "buildstrategiesstructurerule",
-    tools: ["buildStrategiesStructureFile.py"],
+    tools: ["buildStrategiesStructureFile"],
     cmd: "cp $(locations :audio_policy_engine_configuration_files) $(genDir) && ls -l $(genDir) &&"+
-         "$(location buildStrategiesStructureFile.py) " +
+         "$(location buildStrategiesStructureFile) " +
          "--audiopolicyengineconfigurationfile $(genDir)/audio_policy_engine_configuration.xml "+
          "--productstrategiesstructurefile $(location :product_strategies_structure_template) " +
          "--outputfile $(out)",
@@ -149,7 +149,7 @@
 // Tools for policy parameter-framework common type structure file generation
 //
 python_binary_host {
-    name: "buildCommonTypesStructureFile.py",
+    name: "buildCommonTypesStructureFile",
     main: "buildCommonTypesStructureFile.py",
     srcs: [
         "buildCommonTypesStructureFile.py",
@@ -159,8 +159,8 @@
 
 genrule_defaults {
     name: "buildcommontypesstructurerule",
-    tools: ["buildCommonTypesStructureFile.py"],
-    cmd: "$(location buildCommonTypesStructureFile.py) " +
+    tools: ["buildCommonTypesStructureFile"],
+    cmd: "$(location buildCommonTypesStructureFile) " +
          "--androidaudiobaseheader $(location :libaudio_system_audio_base) " +
          "--commontypesstructure $(location :common_types_structure_template) " +
          "--outputfile $(out)",
diff --git a/services/audiopolicy/service/AudioPolicyService.cpp b/services/audiopolicy/service/AudioPolicyService.cpp
index 50a536b..4f3ea6c 100644
--- a/services/audiopolicy/service/AudioPolicyService.cpp
+++ b/services/audiopolicy/service/AudioPolicyService.cpp
@@ -1342,7 +1342,9 @@
         } else {
             getIAudioPolicyServiceStatistics().event(code, elapsedMs);
         }
-    });
+    }, mediautils::TimeCheck::kDefaultTimeoutDuration,
+    mediautils::TimeCheck::kDefaultSecondChanceDuration,
+    true /* crashOnTimeout */);
 
     switch (code) {
         case SHELL_COMMAND_TRANSACTION: {
diff --git a/services/audiopolicy/service/SpatializerPoseController.cpp b/services/audiopolicy/service/SpatializerPoseController.cpp
index 97ddd4e..8624aa1 100644
--- a/services/audiopolicy/service/SpatializerPoseController.cpp
+++ b/services/audiopolicy/service/SpatializerPoseController.cpp
@@ -52,7 +52,9 @@
 constexpr auto kPredictionDuration = 50ms;
 
 // After not getting a pose sample for this long, we would treat the measurement as stale.
-constexpr auto kFreshnessTimeout = 50ms;
+// The max connection interval is 50ms, and HT sensor event interval can differ depending on the
+// sampling rate, scheduling, sensor eventQ FIFO etc. 120 (2 * 50 + 20) ms seems reasonable for now.
+constexpr auto kFreshnessTimeout = 120ms;
 
 // Auto-recenter kicks in after the head has been still for this long.
 constexpr auto kAutoRecenterWindowDuration = 6s;