| /* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. |
| * |
| * This is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This software is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this software; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
| * USA. |
| */ |
| |
| // |
| // zrleEncode.h - zrle encoding function. |
| // |
| // This file is #included after having set the following macros: |
| // BPP - 8, 16 or 32 |
| // EXTRA_ARGS - optional extra arguments |
| // GET_IMAGE_INTO_BUF - gets a rectangle of pixel data into a buffer |
| // |
| // Note that the buf argument to ZRLE_ENCODE needs to be at least one pixel |
| // bigger than the largest tile of pixel data, since the ZRLE encoding |
| // algorithm writes to the position one past the end of the pixel data. |
| // |
| |
| #include <rdr/OutStream.h> |
| #include <rdr/ZlibOutStream.h> |
| #include <assert.h> |
| |
| namespace rfb { |
| |
| // CONCAT2E concatenates its arguments, expanding them if they are macros |
| |
| #ifndef CONCAT2E |
| #define CONCAT2(a,b) a##b |
| #define CONCAT2E(a,b) CONCAT2(a,b) |
| #endif |
| |
| #ifdef CPIXEL |
| #define PIXEL_T rdr::CONCAT2E(U,BPP) |
| #define WRITE_PIXEL CONCAT2E(writeOpaque,CPIXEL) |
| #define ZRLE_ENCODE CONCAT2E(zrleEncode,CPIXEL) |
| #define ZRLE_ENCODE_TILE CONCAT2E(zrleEncodeTile,CPIXEL) |
| #define BPPOUT 24 |
| #else |
| #define PIXEL_T rdr::CONCAT2E(U,BPP) |
| #define WRITE_PIXEL CONCAT2E(writeOpaque,BPP) |
| #define ZRLE_ENCODE CONCAT2E(zrleEncode,BPP) |
| #define ZRLE_ENCODE_TILE CONCAT2E(zrleEncodeTile,BPP) |
| #define BPPOUT BPP |
| #endif |
| |
| #ifndef ZRLE_ONCE |
| #define ZRLE_ONCE |
| static const int bitsPerPackedPixel[] = { |
| 0, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 |
| }; |
| |
| // The PaletteHelper class helps us build up the palette from pixel data by |
| // storing a reverse index using a simple hash-table |
| |
| class PaletteHelper { |
| public: |
| enum { MAX_SIZE = 127 }; |
| |
| PaletteHelper() |
| { |
| memset(index, 255, sizeof(index)); |
| size = 0; |
| } |
| |
| inline int hash(rdr::U32 pix) |
| { |
| return (pix ^ (pix >> 17)) & 4095; |
| } |
| |
| inline void insert(rdr::U32 pix) |
| { |
| if (size < MAX_SIZE) { |
| int i = hash(pix); |
| while (index[i] != 255 && key[i] != pix) |
| i++; |
| if (index[i] != 255) return; |
| |
| index[i] = size; |
| key[i] = pix; |
| palette[size] = pix; |
| } |
| size++; |
| } |
| |
| inline int lookup(rdr::U32 pix) |
| { |
| assert(size <= MAX_SIZE); |
| int i = hash(pix); |
| while (index[i] != 255 && key[i] != pix) |
| i++; |
| if (index[i] != 255) return index[i]; |
| return -1; |
| } |
| |
| rdr::U32 palette[MAX_SIZE]; |
| rdr::U8 index[4096+MAX_SIZE]; |
| rdr::U32 key[4096+MAX_SIZE]; |
| int size; |
| }; |
| #endif |
| |
| void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os); |
| |
| bool ZRLE_ENCODE (const Rect& r, rdr::OutStream* os, |
| rdr::ZlibOutStream* zos, void* buf, int maxLen, Rect* actual |
| #ifdef EXTRA_ARGS |
| , EXTRA_ARGS |
| #endif |
| ) |
| { |
| zos->setUnderlying(os); |
| // RLE overhead is at worst 1 byte per 64x64 (4Kpixel) block |
| int worstCaseLine = r.width() * 64 * (BPPOUT/8) + 1 + r.width() / 64; |
| // Zlib overhead is at worst 6 bytes plus 5 bytes per 32Kbyte block. |
| worstCaseLine += 11 + 5 * (worstCaseLine >> 15); |
| Rect t; |
| |
| for (t.tl.y = r.tl.y; t.tl.y < r.br.y; t.tl.y += 64) { |
| |
| t.br.y = __rfbmin(r.br.y, t.tl.y + 64); |
| |
| if (os->length() + worstCaseLine > maxLen) { |
| if (t.tl.y == r.tl.y) |
| throw Exception("ZRLE: not enough space for first line?"); |
| actual->tl = r.tl; |
| actual->br.x = r.br.x; |
| actual->br.y = t.tl.y; |
| return false; |
| } |
| |
| for (t.tl.x = r.tl.x; t.tl.x < r.br.x; t.tl.x += 64) { |
| |
| t.br.x = __rfbmin(r.br.x, t.tl.x + 64); |
| |
| GET_IMAGE_INTO_BUF(t,buf); |
| |
| ZRLE_ENCODE_TILE((PIXEL_T*)buf, t.width(), t.height(), zos); |
| } |
| |
| zos->flush(); |
| } |
| return true; |
| } |
| |
| |
| void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os) |
| { |
| // First find the palette and the number of runs |
| |
| PaletteHelper ph; |
| |
| int runs = 0; |
| int singlePixels = 0; |
| |
| PIXEL_T* ptr = data; |
| PIXEL_T* end = ptr + h * w; |
| *end = ~*(end-1); // one past the end is different so the while loop ends |
| |
| while (ptr < end) { |
| PIXEL_T pix = *ptr; |
| if (*++ptr != pix) { |
| singlePixels++; |
| } else { |
| while (*++ptr == pix) ; |
| runs++; |
| } |
| ph.insert(pix); |
| } |
| |
| //fprintf(stderr,"runs %d, single pixels %d, paletteSize %d\n", |
| // runs, singlePixels, ph.size); |
| |
| // Solid tile is a special case |
| |
| if (ph.size == 1) { |
| os->writeU8(1); |
| os->WRITE_PIXEL(ph.palette[0]); |
| return; |
| } |
| |
| // Try to work out whether to use RLE and/or a palette. We do this by |
| // estimating the number of bytes which will be generated and picking the |
| // method which results in the fewest bytes. Of course this may not result |
| // in the fewest bytes after compression... |
| |
| bool useRle = false; |
| bool usePalette = false; |
| |
| int estimatedBytes = w * h * (BPPOUT/8); // start assuming raw |
| |
| int plainRleBytes = ((BPPOUT/8)+1) * (runs + singlePixels); |
| |
| if (plainRleBytes < estimatedBytes) { |
| useRle = true; |
| estimatedBytes = plainRleBytes; |
| } |
| |
| if (ph.size < 128) { |
| int paletteRleBytes = (BPPOUT/8) * ph.size + 2 * runs + singlePixels; |
| |
| if (paletteRleBytes < estimatedBytes) { |
| useRle = true; |
| usePalette = true; |
| estimatedBytes = paletteRleBytes; |
| } |
| |
| if (ph.size < 17) { |
| int packedBytes = ((BPPOUT/8) * ph.size + |
| w * h * bitsPerPackedPixel[ph.size-1] / 8); |
| |
| if (packedBytes < estimatedBytes) { |
| useRle = false; |
| usePalette = true; |
| estimatedBytes = packedBytes; |
| } |
| } |
| } |
| |
| if (!usePalette) ph.size = 0; |
| |
| os->writeU8((useRle ? 128 : 0) | ph.size); |
| |
| for (int i = 0; i < ph.size; i++) { |
| os->WRITE_PIXEL(ph.palette[i]); |
| } |
| |
| if (useRle) { |
| |
| PIXEL_T* ptr = data; |
| PIXEL_T* end = ptr + w * h; |
| PIXEL_T* runStart; |
| PIXEL_T pix; |
| while (ptr < end) { |
| runStart = ptr; |
| pix = *ptr++; |
| while (*ptr == pix && ptr < end) |
| ptr++; |
| int len = ptr - runStart; |
| if (len <= 2 && usePalette) { |
| int index = ph.lookup(pix); |
| if (len == 2) |
| os->writeU8(index); |
| os->writeU8(index); |
| continue; |
| } |
| if (usePalette) { |
| int index = ph.lookup(pix); |
| os->writeU8(index | 128); |
| } else { |
| os->WRITE_PIXEL(pix); |
| } |
| len -= 1; |
| while (len >= 255) { |
| os->writeU8(255); |
| len -= 255; |
| } |
| os->writeU8(len); |
| } |
| |
| } else { |
| |
| // no RLE |
| |
| if (usePalette) { |
| |
| // packed pixels |
| |
| assert (ph.size < 17); |
| |
| int bppp = bitsPerPackedPixel[ph.size-1]; |
| |
| PIXEL_T* ptr = data; |
| |
| for (int i = 0; i < h; i++) { |
| rdr::U8 nbits = 0; |
| rdr::U8 byte = 0; |
| |
| PIXEL_T* eol = ptr + w; |
| |
| while (ptr < eol) { |
| PIXEL_T pix = *ptr++; |
| rdr::U8 index = ph.lookup(pix); |
| byte = (byte << bppp) | index; |
| nbits += bppp; |
| if (nbits >= 8) { |
| os->writeU8(byte); |
| nbits = 0; |
| } |
| } |
| if (nbits > 0) { |
| byte <<= 8 - nbits; |
| os->writeU8(byte); |
| } |
| } |
| } else { |
| |
| // raw |
| |
| #ifdef CPIXEL |
| for (PIXEL_T* ptr = data; ptr < data+w*h; ptr++) { |
| os->WRITE_PIXEL(*ptr); |
| } |
| #else |
| os->writeBytes(data, w*h*(BPP/8)); |
| #endif |
| } |
| } |
| } |
| |
| #undef PIXEL_T |
| #undef WRITE_PIXEL |
| #undef ZRLE_ENCODE |
| #undef ZRLE_ENCODE_TILE |
| #undef BPPOUT |
| } |