| // |
| // "$Id: fl_curve.cxx 7903 2010-11-28 21:06:39Z matt $" |
| // |
| // Bezier curve functions for the Fast Light Tool Kit (FLTK). |
| // |
| // Copyright 1998-2010 by Bill Spitzak and others. |
| // |
| // This library is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Library General Public |
| // License as published by the Free Software Foundation; either |
| // version 2 of the License, or (at your option) any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| // Library General Public License for more details. |
| // |
| // You should have received a copy of the GNU Library General Public |
| // License along with this library; if not, write to the Free Software |
| // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
| // USA. |
| // |
| // Please report all bugs and problems on the following page: |
| // |
| // http://www.fltk.org/str.php |
| // |
| |
| /** |
| \file fl_curve.cxx |
| \brief Utility for drawing Bezier curves, adding the points to the |
| current fl_begin/fl_vertex/fl_end path. |
| |
| Incremental math implementation: |
| I very much doubt this is optimal! From Foley/vanDam page 511. |
| If anybody has a better algorithm, please send it! |
| */ |
| |
| #include <FL/fl_draw.H> |
| #include <math.h> |
| |
| void Fl_Graphics_Driver::curve(double X0, double Y0, |
| double X1, double Y1, |
| double X2, double Y2, |
| double X3, double Y3) { |
| |
| double x = fl_transform_x(X0,Y0); |
| double y = fl_transform_y(X0,Y0); |
| |
| // draw point 0: |
| fl_transformed_vertex(x,y); |
| |
| double x1 = fl_transform_x(X1,Y1); |
| double yy1 = fl_transform_y(X1,Y1); |
| double x2 = fl_transform_x(X2,Y2); |
| double y2 = fl_transform_y(X2,Y2); |
| double x3 = fl_transform_x(X3,Y3); |
| double y3 = fl_transform_y(X3,Y3); |
| |
| // find the area: |
| double a = fabs((x-x2)*(y3-yy1)-(y-y2)*(x3-x1)); |
| double b = fabs((x-x3)*(y2-yy1)-(y-y3)*(x2-x1)); |
| if (b > a) a = b; |
| |
| // use that to guess at the number of segments: |
| int n = int(sqrt(a)/4); |
| if (n > 1) { |
| if (n > 100) n = 100; // make huge curves not hang forever |
| |
| double e = 1.0/n; |
| |
| // calculate the coefficients of 3rd order equation: |
| double xa = (x3-3*x2+3*x1-x); |
| double xb = 3*(x2-2*x1+x); |
| double xc = 3*(x1-x); |
| // calculate the forward differences: |
| double dx1 = ((xa*e+xb)*e+xc)*e; |
| double dx3 = 6*xa*e*e*e; |
| double dx2 = dx3 + 2*xb*e*e; |
| |
| // calculate the coefficients of 3rd order equation: |
| double ya = (y3-3*y2+3*yy1-y); |
| double yb = 3*(y2-2*yy1+y); |
| double yc = 3*(yy1-y); |
| // calculate the forward differences: |
| double dy1 = ((ya*e+yb)*e+yc)*e; |
| double dy3 = 6*ya*e*e*e; |
| double dy2 = dy3 + 2*yb*e*e; |
| |
| // draw points 1 .. n-2: |
| for (int m=2; m<n; m++) { |
| x += dx1; |
| dx1 += dx2; |
| dx2 += dx3; |
| y += dy1; |
| dy1 += dy2; |
| dy2 += dy3; |
| fl_transformed_vertex(x,y); |
| } |
| |
| // draw point n-1: |
| fl_transformed_vertex(x+dx1, y+dy1); |
| } |
| |
| // draw point n: |
| fl_transformed_vertex(x3,y3); |
| } |
| |
| // |
| // End of "$Id: fl_curve.cxx 7903 2010-11-28 21:06:39Z matt $". |
| // |