Product config makefiles to Starlark converter
Test: treehugger; internal tests in mk2rbc_test.go
Bug: 172923994
Change-Id: I43120b9c181ef2b8d9453e743233811b0fec268b
diff --git a/mk2rbc/mk2rbc.go b/mk2rbc/mk2rbc.go
new file mode 100644
index 0000000..55a35e9
--- /dev/null
+++ b/mk2rbc/mk2rbc.go
@@ -0,0 +1,1344 @@
+// Copyright 2021 Google LLC
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Convert makefile containing device configuration to Starlark file
+// The conversion can handle the following constructs in a makefile:
+// * comments
+// * simple variable assignments
+// * $(call init-product,<file>)
+// * $(call inherit-product-if-exists
+// * if directives
+// All other constructs are carried over to the output starlark file as comments.
+//
+package mk2rbc
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "io/ioutil"
+ "os"
+ "path/filepath"
+ "regexp"
+ "strconv"
+ "strings"
+ "text/scanner"
+
+ mkparser "android/soong/androidmk/parser"
+)
+
+const (
+ baseUri = "//build/make/core:product_config.rbc"
+ // The name of the struct exported by the product_config.rbc
+ // that contains the functions and variables available to
+ // product configuration Starlark files.
+ baseName = "rblf"
+
+ // And here are the functions and variables:
+ cfnGetCfg = baseName + ".cfg"
+ cfnMain = baseName + ".product_configuration"
+ cfnPrintVars = baseName + ".printvars"
+ cfnWarning = baseName + ".warning"
+ cfnLocalAppend = baseName + ".local_append"
+ cfnLocalSetDefault = baseName + ".local_set_default"
+ cfnInherit = baseName + ".inherit"
+ cfnSetListDefault = baseName + ".setdefault"
+)
+
+const (
+ // Phony makefile functions, they are eventually rewritten
+ // according to knownFunctions map
+ fileExistsPhony = "$file_exists"
+ wildcardExistsPhony = "$wildcard_exists"
+)
+
+const (
+ callLoadAlways = "inherit-product"
+ callLoadIf = "inherit-product-if-exists"
+)
+
+var knownFunctions = map[string]struct {
+ // The name of the runtime function this function call in makefiles maps to.
+ // If it starts with !, then this makefile function call is rewritten to
+ // something else.
+ runtimeName string
+ returnType starlarkType
+}{
+ fileExistsPhony: {baseName + ".file_exists", starlarkTypeBool},
+ wildcardExistsPhony: {baseName + ".file_wildcard_exists", starlarkTypeBool},
+ "add-to-product-copy-files-if-exists": {baseName + ".copy_if_exists", starlarkTypeList},
+ "addprefix": {baseName + ".addprefix", starlarkTypeList},
+ "addsuffix": {baseName + ".addsuffix", starlarkTypeList},
+ "enforce-product-packages-exist": {baseName + ".enforce_product_packages_exist", starlarkTypeVoid},
+ "error": {baseName + ".mkerror", starlarkTypeVoid},
+ "findstring": {"!findstring", starlarkTypeInt},
+ "find-copy-subdir-files": {baseName + ".find_and_copy", starlarkTypeList},
+ "filter": {baseName + ".filter", starlarkTypeList},
+ "filter-out": {baseName + ".filter_out", starlarkTypeList},
+ "info": {baseName + ".mkinfo", starlarkTypeVoid},
+ "is-board-platform": {"!is-board-platform", starlarkTypeBool},
+ "is-board-platform-in-list": {"!is-board-platform-in-list", starlarkTypeBool},
+ "is-product-in-list": {"!is-product-in-list", starlarkTypeBool},
+ "is-vendor-board-platform": {"!is-vendor-board-platform", starlarkTypeBool},
+ callLoadAlways: {"!inherit-product", starlarkTypeVoid},
+ callLoadIf: {"!inherit-product-if-exists", starlarkTypeVoid},
+ "produce_copy_files": {baseName + ".produce_copy_files", starlarkTypeList},
+ "require-artifacts-in-path": {baseName + ".require_artifacts_in_path", starlarkTypeVoid},
+ "require-artifacts-in-path-relaxed": {baseName + ".require_artifacts_in_path_relaxed", starlarkTypeVoid},
+ // TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002
+ "shell": {baseName + ".shell", starlarkTypeString},
+ "strip": {baseName + ".mkstrip", starlarkTypeString},
+ "subst": {baseName + ".subst", starlarkTypeString},
+ "warning": {baseName + ".mkwarning", starlarkTypeVoid},
+ "word": {baseName + "!word", starlarkTypeString},
+ "wildcard": {baseName + ".expand_wildcard", starlarkTypeList},
+}
+
+var builtinFuncRex = regexp.MustCompile(
+ "^(addprefix|addsuffix|abspath|and|basename|call|dir|error|eval" +
+ "|flavor|foreach|file|filter|filter-out|findstring|firstword|guile" +
+ "|if|info|join|lastword|notdir|or|origin|patsubst|realpath" +
+ "|shell|sort|strip|subst|suffix|value|warning|word|wordlist|words" +
+ "|wildcard)")
+
+// Conversion request parameters
+type Request struct {
+ MkFile string // file to convert
+ Reader io.Reader // if set, read input from this stream instead
+ RootDir string // root directory path used to resolve included files
+ OutputSuffix string // generated Starlark files suffix
+ OutputDir string // if set, root of the output hierarchy
+ ErrorLogger ErrorMonitorCB
+ TracedVariables []string // trace assignment to these variables
+ TraceCalls bool
+ WarnPartialSuccess bool
+}
+
+// An error sink allowing to gather error statistics.
+// NewError is called on every error encountered during processing.
+type ErrorMonitorCB interface {
+ NewError(s string, node mkparser.Node, args ...interface{})
+}
+
+// Derives module name for a given file. It is base name
+// (file name without suffix), with some characters replaced to make it a Starlark identifier
+func moduleNameForFile(mkFile string) string {
+ base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile))
+ // TODO(asmundak): what else can be in the product file names?
+ return strings.ReplaceAll(base, "-", "_")
+}
+
+func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString {
+ r := &mkparser.MakeString{StringPos: mkString.StringPos}
+ r.Strings = append(r.Strings, mkString.Strings...)
+ r.Variables = append(r.Variables, mkString.Variables...)
+ return r
+}
+
+func isMakeControlFunc(s string) bool {
+ return s == "error" || s == "warning" || s == "info"
+}
+
+// Starlark output generation context
+type generationContext struct {
+ buf strings.Builder
+ starScript *StarlarkScript
+ indentLevel int
+ inAssignment bool
+ tracedCount int
+}
+
+func NewGenerateContext(ss *StarlarkScript) *generationContext {
+ return &generationContext{starScript: ss}
+}
+
+// emit returns generated script
+func (gctx *generationContext) emit() string {
+ ss := gctx.starScript
+
+ // The emitted code has the following layout:
+ // <initial comments>
+ // preamble, i.e.,
+ // load statement for the runtime support
+ // load statement for each unique submodule pulled in by this one
+ // def init(g, handle):
+ // cfg = rblf.cfg(handle)
+ // <statements>
+ // <warning if conversion was not clean>
+
+ iNode := len(ss.nodes)
+ for i, node := range ss.nodes {
+ if _, ok := node.(*commentNode); !ok {
+ iNode = i
+ break
+ }
+ node.emit(gctx)
+ }
+
+ gctx.emitPreamble()
+
+ gctx.newLine()
+ // The arguments passed to the init function are the global dictionary
+ // ('g') and the product configuration dictionary ('cfg')
+ gctx.write("def init(g, handle):")
+ gctx.indentLevel++
+ if gctx.starScript.traceCalls {
+ gctx.newLine()
+ gctx.writef(`print(">%s")`, gctx.starScript.mkFile)
+ }
+ gctx.newLine()
+ gctx.writef("cfg = %s(handle)", cfnGetCfg)
+ for _, node := range ss.nodes[iNode:] {
+ node.emit(gctx)
+ }
+
+ if ss.hasErrors && ss.warnPartialSuccess {
+ gctx.newLine()
+ gctx.writef("%s(%q, %q)", cfnWarning, filepath.Base(ss.mkFile), "partially successful conversion")
+ }
+ if gctx.starScript.traceCalls {
+ gctx.newLine()
+ gctx.writef(`print("<%s")`, gctx.starScript.mkFile)
+ }
+ gctx.indentLevel--
+ gctx.write("\n")
+ return gctx.buf.String()
+}
+
+func (gctx *generationContext) emitPreamble() {
+ gctx.newLine()
+ gctx.writef("load(%q, %q)", baseUri, baseName)
+ // Emit exactly one load statement for each URI.
+ loadedSubConfigs := make(map[string]string)
+ for _, sc := range gctx.starScript.inherited {
+ uri := sc.path
+ if m, ok := loadedSubConfigs[uri]; ok {
+ // No need to emit load statement, but fix module name.
+ sc.moduleLocalName = m
+ continue
+ }
+ if !sc.loadAlways {
+ uri += "|init"
+ }
+ gctx.newLine()
+ gctx.writef("load(%q, %s = \"init\")", uri, sc.entryName())
+ loadedSubConfigs[uri] = sc.moduleLocalName
+ }
+ gctx.write("\n")
+}
+
+func (gctx *generationContext) emitPass() {
+ gctx.newLine()
+ gctx.write("pass")
+}
+
+func (gctx *generationContext) write(ss ...string) {
+ for _, s := range ss {
+ gctx.buf.WriteString(s)
+ }
+}
+
+func (gctx *generationContext) writef(format string, args ...interface{}) {
+ gctx.write(fmt.Sprintf(format, args...))
+}
+
+func (gctx *generationContext) newLine() {
+ if gctx.buf.Len() == 0 {
+ return
+ }
+ gctx.write("\n")
+ gctx.writef("%*s", 2*gctx.indentLevel, "")
+}
+
+type knownVariable struct {
+ name string
+ class varClass
+ valueType starlarkType
+}
+
+type knownVariables map[string]knownVariable
+
+func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) {
+ v, exists := pcv[name]
+ if !exists {
+ pcv[name] = knownVariable{name, varClass, valueType}
+ return
+ }
+ // Conflict resolution:
+ // * config class trumps everything
+ // * any type trumps unknown type
+ match := varClass == v.class
+ if !match {
+ if varClass == VarClassConfig {
+ v.class = VarClassConfig
+ match = true
+ } else if v.class == VarClassConfig {
+ match = true
+ }
+ }
+ if valueType != v.valueType {
+ if valueType != starlarkTypeUnknown {
+ if v.valueType == starlarkTypeUnknown {
+ v.valueType = valueType
+ } else {
+ match = false
+ }
+ }
+ }
+ if !match {
+ fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n",
+ name, varClass, valueType, v.class, v.valueType)
+ }
+}
+
+// All known product variables.
+var KnownVariables = make(knownVariables)
+
+func init() {
+ for _, kv := range []string{
+ // Kernel-related variables that we know are lists.
+ "BOARD_VENDOR_KERNEL_MODULES",
+ "BOARD_VENDOR_RAMDISK_KERNEL_MODULES",
+ "BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD",
+ "BOARD_RECOVERY_KERNEL_MODULES",
+ // Other variables we knwo are lists
+ "ART_APEX_JARS",
+ } {
+ KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList)
+ }
+}
+
+type nodeReceiver interface {
+ newNode(node starlarkNode)
+}
+
+// Information about the generated Starlark script.
+type StarlarkScript struct {
+ mkFile string
+ moduleName string
+ mkPos scanner.Position
+ nodes []starlarkNode
+ inherited []*inheritedModule
+ hasErrors bool
+ topDir string
+ traceCalls bool // print enter/exit each init function
+ warnPartialSuccess bool
+}
+
+func (ss *StarlarkScript) newNode(node starlarkNode) {
+ ss.nodes = append(ss.nodes, node)
+}
+
+// varAssignmentScope points to the last assignment for each variable
+// in the current block. It is used during the parsing to chain
+// the assignments to a variable together.
+type varAssignmentScope struct {
+ outer *varAssignmentScope
+ vars map[string]*assignmentNode
+}
+
+// parseContext holds the script we are generating and all the ephemeral data
+// needed during the parsing.
+type parseContext struct {
+ script *StarlarkScript
+ nodes []mkparser.Node // Makefile as parsed by mkparser
+ currentNodeIndex int // Node in it we are processing
+ ifNestLevel int
+ moduleNameCount map[string]int // count of imported modules with given basename
+ fatalError error
+ builtinMakeVars map[string]starlarkExpr
+ outputSuffix string
+ errorLogger ErrorMonitorCB
+ tracedVariables map[string]bool // variables to be traced in the generated script
+ variables map[string]variable
+ varAssignments *varAssignmentScope
+ receiver nodeReceiver // receptacle for the generated starlarkNode's
+ receiverStack []nodeReceiver
+ outputDir string
+}
+
+func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext {
+ predefined := []struct{ name, value string }{
+ {"SRC_TARGET_DIR", filepath.Join("build", "make", "target")},
+ {"LOCAL_PATH", filepath.Dir(ss.mkFile)},
+ {"TOPDIR", ss.topDir},
+ // TODO(asmundak): maybe read it from build/make/core/envsetup.mk?
+ {"TARGET_COPY_OUT_SYSTEM", "system"},
+ {"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"},
+ {"TARGET_COPY_OUT_DATA", "data"},
+ {"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")},
+ {"TARGET_COPY_OUT_OEM", "oem"},
+ {"TARGET_COPY_OUT_RAMDISK", "ramdisk"},
+ {"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"},
+ {"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"},
+ {"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"},
+ {"TARGET_COPY_OUT_ROOT", "root"},
+ {"TARGET_COPY_OUT_RECOVERY", "recovery"},
+ {"TARGET_COPY_OUT_VENDOR", "||VENDOR-PATH-PH||"},
+ {"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"},
+ {"TARGET_COPY_OUT_PRODUCT", "||PRODUCT-PATH-PH||"},
+ {"TARGET_COPY_OUT_PRODUCT_SERVICES", "||PRODUCT-PATH-PH||"},
+ {"TARGET_COPY_OUT_SYSTEM_EXT", "||SYSTEM_EXT-PATH-PH||"},
+ {"TARGET_COPY_OUT_ODM", "||ODM-PATH-PH||"},
+ {"TARGET_COPY_OUT_VENDOR_DLKM", "||VENDOR_DLKM-PATH-PH||"},
+ {"TARGET_COPY_OUT_ODM_DLKM", "||ODM_DLKM-PATH-PH||"},
+ // TODO(asmundak): to process internal config files, we need the following variables:
+ // BOARD_CONFIG_VENDOR_PATH
+ // TARGET_VENDOR
+ // target_base_product
+ //
+
+ // the following utility variables are set in build/make/common/core.mk:
+ {"empty", ""},
+ {"space", " "},
+ {"comma", ","},
+ {"newline", "\n"},
+ {"pound", "#"},
+ {"backslash", "\\"},
+ }
+ ctx := &parseContext{
+ script: ss,
+ nodes: nodes,
+ currentNodeIndex: 0,
+ ifNestLevel: 0,
+ moduleNameCount: make(map[string]int),
+ builtinMakeVars: map[string]starlarkExpr{},
+ variables: make(map[string]variable),
+ }
+ ctx.pushVarAssignments()
+ for _, item := range predefined {
+ ctx.variables[item.name] = &predefinedVariable{
+ baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString},
+ value: &stringLiteralExpr{item.value},
+ }
+ }
+
+ return ctx
+}
+
+func (ctx *parseContext) lastAssignment(name string) *assignmentNode {
+ for va := ctx.varAssignments; va != nil; va = va.outer {
+ if v, ok := va.vars[name]; ok {
+ return v
+ }
+ }
+ return nil
+}
+
+func (ctx *parseContext) setLastAssignment(name string, asgn *assignmentNode) {
+ ctx.varAssignments.vars[name] = asgn
+}
+
+func (ctx *parseContext) pushVarAssignments() {
+ va := &varAssignmentScope{
+ outer: ctx.varAssignments,
+ vars: make(map[string]*assignmentNode),
+ }
+ ctx.varAssignments = va
+}
+
+func (ctx *parseContext) popVarAssignments() {
+ ctx.varAssignments = ctx.varAssignments.outer
+}
+
+func (ctx *parseContext) pushReceiver(rcv nodeReceiver) {
+ ctx.receiverStack = append(ctx.receiverStack, ctx.receiver)
+ ctx.receiver = rcv
+}
+
+func (ctx *parseContext) popReceiver() {
+ last := len(ctx.receiverStack) - 1
+ if last < 0 {
+ panic(fmt.Errorf("popReceiver: receiver stack empty"))
+ }
+ ctx.receiver = ctx.receiverStack[last]
+ ctx.receiverStack = ctx.receiverStack[0:last]
+}
+
+func (ctx *parseContext) hasNodes() bool {
+ return ctx.currentNodeIndex < len(ctx.nodes)
+}
+
+func (ctx *parseContext) getNode() mkparser.Node {
+ if !ctx.hasNodes() {
+ return nil
+ }
+ node := ctx.nodes[ctx.currentNodeIndex]
+ ctx.currentNodeIndex++
+ return node
+}
+
+func (ctx *parseContext) backNode() {
+ if ctx.currentNodeIndex <= 0 {
+ panic("Cannot back off")
+ }
+ ctx.currentNodeIndex--
+}
+
+func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) {
+ // Handle only simple variables
+ if !a.Name.Const() {
+ ctx.errorf(a, "Only simple variables are handled")
+ return
+ }
+ name := a.Name.Strings[0]
+ lhs := ctx.addVariable(name)
+ if lhs == nil {
+ ctx.errorf(a, "unknown variable %s", name)
+ return
+ }
+ _, isTraced := ctx.tracedVariables[name]
+ asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced}
+ if lhs.valueType() == starlarkTypeUnknown {
+ // Try to divine variable type from the RHS
+ asgn.value = ctx.parseMakeString(a, a.Value)
+ if xBad, ok := asgn.value.(*badExpr); ok {
+ ctx.wrapBadExpr(xBad)
+ return
+ }
+ inferred_type := asgn.value.typ()
+ if inferred_type != starlarkTypeUnknown {
+ if ogv, ok := lhs.(*otherGlobalVariable); ok {
+ ogv.typ = inferred_type
+ } else if pcv, ok := lhs.(*productConfigVariable); ok {
+ pcv.typ = inferred_type
+ } else {
+ panic(fmt.Errorf("cannot assign new type to a variable %s, its flavor is %T", lhs.name(), lhs))
+ }
+ }
+ }
+ if lhs.valueType() == starlarkTypeList {
+ xConcat := ctx.buildConcatExpr(a)
+ if xConcat == nil {
+ return
+ }
+ switch len(xConcat.items) {
+ case 0:
+ asgn.value = &listExpr{}
+ case 1:
+ asgn.value = xConcat.items[0]
+ default:
+ asgn.value = xConcat
+ }
+ } else {
+ asgn.value = ctx.parseMakeString(a, a.Value)
+ if xBad, ok := asgn.value.(*badExpr); ok {
+ ctx.wrapBadExpr(xBad)
+ return
+ }
+ }
+
+ // TODO(asmundak): move evaluation to a separate pass
+ asgn.value, _ = asgn.value.eval(ctx.builtinMakeVars)
+
+ asgn.previous = ctx.lastAssignment(name)
+ ctx.setLastAssignment(name, asgn)
+ switch a.Type {
+ case "=", ":=":
+ asgn.flavor = asgnSet
+ case "+=":
+ if asgn.previous == nil && !asgn.lhs.isPreset() {
+ asgn.flavor = asgnMaybeAppend
+ } else {
+ asgn.flavor = asgnAppend
+ }
+ case "?=":
+ asgn.flavor = asgnMaybeSet
+ default:
+ panic(fmt.Errorf("unexpected assignment type %s", a.Type))
+ }
+
+ ctx.receiver.newNode(asgn)
+}
+
+func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) *concatExpr {
+ xConcat := &concatExpr{}
+ var xItemList *listExpr
+ addToItemList := func(x ...starlarkExpr) {
+ if xItemList == nil {
+ xItemList = &listExpr{[]starlarkExpr{}}
+ }
+ xItemList.items = append(xItemList.items, x...)
+ }
+ finishItemList := func() {
+ if xItemList != nil {
+ xConcat.items = append(xConcat.items, xItemList)
+ xItemList = nil
+ }
+ }
+
+ items := a.Value.Words()
+ for _, item := range items {
+ // A function call in RHS is supposed to return a list, all other item
+ // expressions return individual elements.
+ switch x := ctx.parseMakeString(a, item).(type) {
+ case *badExpr:
+ ctx.wrapBadExpr(x)
+ return nil
+ case *stringLiteralExpr:
+ addToItemList(maybeConvertToStringList(x).(*listExpr).items...)
+ default:
+ switch x.typ() {
+ case starlarkTypeList:
+ finishItemList()
+ xConcat.items = append(xConcat.items, x)
+ case starlarkTypeString:
+ finishItemList()
+ xConcat.items = append(xConcat.items, &callExpr{
+ object: x,
+ name: "split",
+ args: nil,
+ returnType: starlarkTypeList,
+ })
+ default:
+ addToItemList(x)
+ }
+ }
+ }
+ if xItemList != nil {
+ xConcat.items = append(xConcat.items, xItemList)
+ }
+ return xConcat
+}
+
+func (ctx *parseContext) newInheritedModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) *inheritedModule {
+ var path string
+ x, _ := pathExpr.eval(ctx.builtinMakeVars)
+ s, ok := x.(*stringLiteralExpr)
+ if !ok {
+ ctx.errorf(v, "inherit-product/include argument is too complex")
+ return nil
+ }
+
+ path = s.literal
+ moduleName := moduleNameForFile(path)
+ moduleLocalName := "_" + moduleName
+ n, found := ctx.moduleNameCount[moduleName]
+ if found {
+ moduleLocalName += fmt.Sprintf("%d", n)
+ }
+ ctx.moduleNameCount[moduleName] = n + 1
+ ln := &inheritedModule{
+ path: ctx.loadedModulePath(path),
+ originalPath: path,
+ moduleName: moduleName,
+ moduleLocalName: moduleLocalName,
+ loadAlways: loadAlways,
+ }
+ ctx.script.inherited = append(ctx.script.inherited, ln)
+ return ln
+}
+
+func (ctx *parseContext) handleInheritModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) {
+ if im := ctx.newInheritedModule(v, pathExpr, loadAlways); im != nil {
+ ctx.receiver.newNode(&inheritNode{im})
+ }
+}
+
+func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) {
+ if ln := ctx.newInheritedModule(v, pathExpr, loadAlways); ln != nil {
+ ctx.receiver.newNode(&includeNode{ln})
+ }
+}
+
+func (ctx *parseContext) handleVariable(v *mkparser.Variable) {
+ // Handle:
+ // $(call inherit-product,...)
+ // $(call inherit-product-if-exists,...)
+ // $(info xxx)
+ // $(warning xxx)
+ // $(error xxx)
+ expr := ctx.parseReference(v, v.Name)
+ switch x := expr.(type) {
+ case *callExpr:
+ if x.name == callLoadAlways || x.name == callLoadIf {
+ ctx.handleInheritModule(v, x.args[0], x.name == callLoadAlways)
+ } else if isMakeControlFunc(x.name) {
+ // File name is the first argument
+ args := []starlarkExpr{
+ &stringLiteralExpr{ctx.script.mkFile},
+ x.args[0],
+ }
+ ctx.receiver.newNode(&exprNode{
+ &callExpr{name: x.name, args: args, returnType: starlarkTypeUnknown},
+ })
+ } else {
+ ctx.receiver.newNode(&exprNode{expr})
+ }
+ case *badExpr:
+ ctx.wrapBadExpr(x)
+ return
+ default:
+ ctx.errorf(v, "cannot handle %s", v.Dump())
+ return
+ }
+}
+
+func (ctx *parseContext) handleDefine(directive *mkparser.Directive) {
+ tokens := strings.Fields(directive.Args.Strings[0])
+ ctx.errorf(directive, "define is not supported: %s", tokens[0])
+}
+
+func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) {
+ ssSwitch := &switchNode{}
+ ctx.pushReceiver(ssSwitch)
+ for ctx.processBranch(ifDirective); ctx.hasNodes() && ctx.fatalError == nil; {
+ node := ctx.getNode()
+ switch x := node.(type) {
+ case *mkparser.Directive:
+ switch x.Name {
+ case "else", "elifdef", "elifndef", "elifeq", "elifneq":
+ ctx.processBranch(x)
+ case "endif":
+ ctx.popReceiver()
+ ctx.receiver.newNode(ssSwitch)
+ return
+ default:
+ ctx.errorf(node, "unexpected directive %s", x.Name)
+ }
+ default:
+ ctx.errorf(ifDirective, "unexpected statement")
+ }
+ }
+ if ctx.fatalError == nil {
+ ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump())
+ }
+ ctx.popReceiver()
+}
+
+// processBranch processes a single branch (if/elseif/else) until the next directive
+// on the same level.
+func (ctx *parseContext) processBranch(check *mkparser.Directive) {
+ block := switchCase{gate: ctx.parseCondition(check)}
+ defer func() {
+ ctx.popVarAssignments()
+ ctx.ifNestLevel--
+
+ }()
+ ctx.pushVarAssignments()
+ ctx.ifNestLevel++
+
+ ctx.pushReceiver(&block)
+ for ctx.hasNodes() {
+ node := ctx.getNode()
+ if ctx.handleSimpleStatement(node) {
+ continue
+ }
+ switch d := node.(type) {
+ case *mkparser.Directive:
+ switch d.Name {
+ case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif":
+ ctx.popReceiver()
+ ctx.receiver.newNode(&block)
+ ctx.backNode()
+ return
+ case "ifdef", "ifndef", "ifeq", "ifneq":
+ ctx.handleIfBlock(d)
+ default:
+ ctx.errorf(d, "unexpected directive %s", d.Name)
+ }
+ default:
+ ctx.errorf(node, "unexpected statement")
+ }
+ }
+ ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump())
+ ctx.popReceiver()
+}
+
+func (ctx *parseContext) newIfDefinedNode(check *mkparser.Directive) (starlarkExpr, bool) {
+ if !check.Args.Const() {
+ return ctx.newBadExpr(check, "ifdef variable ref too complex: %s", check.Args.Dump()), false
+ }
+ v := ctx.addVariable(check.Args.Strings[0])
+ return &variableDefinedExpr{v}, true
+}
+
+func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode {
+ switch check.Name {
+ case "ifdef", "ifndef", "elifdef", "elifndef":
+ v, ok := ctx.newIfDefinedNode(check)
+ if ok && strings.HasSuffix(check.Name, "ndef") {
+ v = ¬Expr{v}
+ }
+ return &ifNode{
+ isElif: strings.HasPrefix(check.Name, "elif"),
+ expr: v,
+ }
+ case "ifeq", "ifneq", "elifeq", "elifneq":
+ return &ifNode{
+ isElif: strings.HasPrefix(check.Name, "elif"),
+ expr: ctx.parseCompare(check),
+ }
+ case "else":
+ return &elseNode{}
+ default:
+ panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump()))
+ }
+}
+
+func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr {
+ message := fmt.Sprintf(text, args...)
+ if ctx.errorLogger != nil {
+ ctx.errorLogger.NewError(text, node, args)
+ }
+ ctx.script.hasErrors = true
+ return &badExpr{node, message}
+}
+
+func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr {
+ // Strip outer parentheses
+ mkArg := cloneMakeString(cond.Args)
+ mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ")
+ n := len(mkArg.Strings)
+ mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ")
+ args := mkArg.Split(",")
+ // TODO(asmundak): handle the case where the arguments are in quotes and space-separated
+ if len(args) != 2 {
+ return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump())
+ }
+ args[0].TrimRightSpaces()
+ args[1].TrimLeftSpaces()
+
+ isEq := !strings.HasSuffix(cond.Name, "neq")
+ switch xLeft := ctx.parseMakeString(cond, args[0]).(type) {
+ case *stringLiteralExpr, *variableRefExpr:
+ switch xRight := ctx.parseMakeString(cond, args[1]).(type) {
+ case *stringLiteralExpr, *variableRefExpr:
+ return &eqExpr{left: xLeft, right: xRight, isEq: isEq}
+ case *badExpr:
+ return xRight
+ default:
+ expr, ok := ctx.parseCheckFunctionCallResult(cond, xLeft, args[1])
+ if ok {
+ return expr
+ }
+ return ctx.newBadExpr(cond, "right operand is too complex: %s", args[1].Dump())
+ }
+ case *badExpr:
+ return xLeft
+ default:
+ switch xRight := ctx.parseMakeString(cond, args[1]).(type) {
+ case *stringLiteralExpr, *variableRefExpr:
+ expr, ok := ctx.parseCheckFunctionCallResult(cond, xRight, args[0])
+ if ok {
+ return expr
+ }
+ return ctx.newBadExpr(cond, "left operand is too complex: %s", args[0].Dump())
+ case *badExpr:
+ return xRight
+ default:
+ return ctx.newBadExpr(cond, "operands are too complex: (%s,%s)", args[0].Dump(), args[1].Dump())
+ }
+ }
+}
+
+func (ctx *parseContext) parseCheckFunctionCallResult(directive *mkparser.Directive, xValue starlarkExpr,
+ varArg *mkparser.MakeString) (starlarkExpr, bool) {
+ mkSingleVar, ok := varArg.SingleVariable()
+ if !ok {
+ return nil, false
+ }
+ expr := ctx.parseReference(directive, mkSingleVar)
+ negate := strings.HasSuffix(directive.Name, "neq")
+ checkIsSomethingFunction := func(xCall *callExpr) starlarkExpr {
+ s, ok := maybeString(xValue)
+ if !ok || s != "true" {
+ return ctx.newBadExpr(directive,
+ fmt.Sprintf("the result of %s can be compared only to 'true'", xCall.name))
+ }
+ if len(xCall.args) < 1 {
+ return ctx.newBadExpr(directive, "%s requires an argument", xCall.name)
+ }
+ return nil
+ }
+ switch x := expr.(type) {
+ case *callExpr:
+ switch x.name {
+ case "filter":
+ return ctx.parseCompareFilterFuncResult(directive, x, xValue, !negate), true
+ case "filter-out":
+ return ctx.parseCompareFilterFuncResult(directive, x, xValue, negate), true
+ case "wildcard":
+ return ctx.parseCompareWildcardFuncResult(directive, x, xValue, negate), true
+ case "findstring":
+ return ctx.parseCheckFindstringFuncResult(directive, x, xValue, negate), true
+ case "strip":
+ return ctx.parseCompareStripFuncResult(directive, x, xValue, negate), true
+ case "is-board-platform":
+ if xBad := checkIsSomethingFunction(x); xBad != nil {
+ return xBad, true
+ }
+ return &eqExpr{
+ left: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
+ right: x.args[0],
+ isEq: !negate,
+ }, true
+ case "is-board-platform-in-list":
+ if xBad := checkIsSomethingFunction(x); xBad != nil {
+ return xBad, true
+ }
+ return &inExpr{
+ expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
+ list: maybeConvertToStringList(x.args[0]),
+ isNot: negate,
+ }, true
+ case "is-product-in-list":
+ if xBad := checkIsSomethingFunction(x); xBad != nil {
+ return xBad, true
+ }
+ return &inExpr{
+ expr: &variableRefExpr{ctx.addVariable("TARGET_PRODUCT"), true},
+ list: maybeConvertToStringList(x.args[0]),
+ isNot: negate,
+ }, true
+ case "is-vendor-board-platform":
+ if xBad := checkIsSomethingFunction(x); xBad != nil {
+ return xBad, true
+ }
+ s, ok := maybeString(x.args[0])
+ if !ok {
+ return ctx.newBadExpr(directive, "cannot handle non-constant argument to is-vendor-board-platform"), true
+ }
+ return &inExpr{
+ expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
+ list: &variableRefExpr{ctx.addVariable(s + "_BOARD_PLATFORMS"), true},
+ isNot: negate,
+ }, true
+ default:
+ return ctx.newBadExpr(directive, "Unknown function in ifeq: %s", x.name), true
+ }
+ case *badExpr:
+ return x, true
+ default:
+ return nil, false
+ }
+}
+
+func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive,
+ filterFuncCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
+ // We handle:
+ // * ifeq/ifneq (,$(filter v1 v2 ..., $(VAR)) becomes if VAR not in/in ["v1", "v2", ...]
+ // * ifeq/ifneq (,$(filter $(VAR), v1 v2 ...) becomes if VAR not in/in ["v1", "v2", ...]
+ // * ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...) becomes if VAR in/not in ["v1", "v2"]
+ // TODO(Asmundak): check the last case works for filter-out, too.
+ xPattern := filterFuncCall.args[0]
+ xText := filterFuncCall.args[1]
+ var xInList *stringLiteralExpr
+ var xVar starlarkExpr
+ var ok bool
+ switch x := xValue.(type) {
+ case *stringLiteralExpr:
+ if x.literal != "" {
+ return ctx.newBadExpr(cond, "filter comparison to non-empty value: %s", xValue)
+ }
+ // Either pattern or text should be const, and the
+ // non-const one should be varRefExpr
+ if xInList, ok = xPattern.(*stringLiteralExpr); ok {
+ xVar = xText
+ } else if xInList, ok = xText.(*stringLiteralExpr); ok {
+ xVar = xPattern
+ }
+ case *variableRefExpr:
+ if v, ok := xPattern.(*variableRefExpr); ok {
+ if xInList, ok = xText.(*stringLiteralExpr); ok && v.ref.name() == x.ref.name() {
+ // ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...), flip negate,
+ // it's the opposite to what is done when comparing to empty.
+ xVar = xPattern
+ negate = !negate
+ }
+ }
+ }
+ if xVar != nil && xInList != nil {
+ if _, ok := xVar.(*variableRefExpr); ok {
+ slExpr := newStringListExpr(strings.Fields(xInList.literal))
+ // Generate simpler code for the common cases:
+ if xVar.typ() == starlarkTypeList {
+ if len(slExpr.items) == 1 {
+ // Checking that a string belongs to list
+ return &inExpr{isNot: negate, list: xVar, expr: slExpr.items[0]}
+ } else {
+ // TODO(asmundak):
+ panic("TBD")
+ }
+ }
+ return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: xVar}
+ }
+ }
+ return ctx.newBadExpr(cond, "filter arguments are too complex: %s", cond.Dump())
+}
+
+func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive,
+ xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
+ if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" {
+ return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue)
+ }
+ callFunc := wildcardExistsPhony
+ if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") {
+ callFunc = fileExistsPhony
+ }
+ var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool}
+ if !negate {
+ cc = ¬Expr{cc}
+ }
+ return cc
+}
+
+func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive,
+ xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
+ if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" {
+ return ctx.newBadExpr(directive, "findstring result can be compared only to empty: %s", xValue)
+ }
+ return &eqExpr{
+ left: &callExpr{
+ object: xCall.args[1],
+ name: "find",
+ args: []starlarkExpr{xCall.args[0]},
+ returnType: starlarkTypeInt,
+ },
+ right: &intLiteralExpr{-1},
+ isEq: !negate,
+ }
+}
+
+func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive,
+ xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
+ if _, ok := xValue.(*stringLiteralExpr); !ok {
+ return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue)
+ }
+ return &eqExpr{
+ left: &callExpr{
+ name: "strip",
+ args: xCall.args,
+ returnType: starlarkTypeString,
+ },
+ right: xValue, isEq: !negate}
+}
+
+// parses $(...), returning an expression
+func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr {
+ ref.TrimLeftSpaces()
+ ref.TrimRightSpaces()
+ refDump := ref.Dump()
+
+ // Handle only the case where the first (or only) word is constant
+ words := ref.SplitN(" ", 2)
+ if !words[0].Const() {
+ return ctx.newBadExpr(node, "reference is too complex: %s", refDump)
+ }
+
+ // If it is a single word, it can be a simple variable
+ // reference or a function call
+ if len(words) == 1 {
+ if isMakeControlFunc(refDump) || refDump == "shell" {
+ return &callExpr{
+ name: refDump,
+ args: []starlarkExpr{&stringLiteralExpr{""}},
+ returnType: starlarkTypeUnknown,
+ }
+ }
+ if v := ctx.addVariable(refDump); v != nil {
+ return &variableRefExpr{v, ctx.lastAssignment(v.name()) != nil}
+ }
+ return ctx.newBadExpr(node, "unknown variable %s", refDump)
+ }
+
+ expr := &callExpr{name: words[0].Dump(), returnType: starlarkTypeUnknown}
+ args := words[1]
+ args.TrimLeftSpaces()
+ // Make control functions and shell need special treatment as everything
+ // after the name is a single text argument
+ if isMakeControlFunc(expr.name) || expr.name == "shell" {
+ x := ctx.parseMakeString(node, args)
+ if xBad, ok := x.(*badExpr); ok {
+ return xBad
+ }
+ expr.args = []starlarkExpr{x}
+ return expr
+ }
+ if expr.name == "call" {
+ words = args.SplitN(",", 2)
+ if words[0].Empty() || !words[0].Const() {
+ return ctx.newBadExpr(nil, "cannot handle %s", refDump)
+ }
+ expr.name = words[0].Dump()
+ if len(words) < 2 {
+ return expr
+ }
+ args = words[1]
+ }
+ if kf, found := knownFunctions[expr.name]; found {
+ expr.returnType = kf.returnType
+ } else {
+ return ctx.newBadExpr(node, "cannot handle invoking %s", expr.name)
+ }
+ switch expr.name {
+ case "word":
+ return ctx.parseWordFunc(node, args)
+ case "subst":
+ return ctx.parseSubstFunc(node, args)
+ default:
+ for _, arg := range args.Split(",") {
+ arg.TrimLeftSpaces()
+ arg.TrimRightSpaces()
+ x := ctx.parseMakeString(node, arg)
+ if xBad, ok := x.(*badExpr); ok {
+ return xBad
+ }
+ expr.args = append(expr.args, x)
+ }
+ }
+ return expr
+}
+
+func (ctx *parseContext) parseSubstFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
+ words := args.Split(",")
+ if len(words) != 3 {
+ return ctx.newBadExpr(node, "subst function should have 3 arguments")
+ }
+ if !words[0].Const() || !words[1].Const() {
+ return ctx.newBadExpr(node, "subst function's from and to arguments should be constant")
+ }
+ from := words[0].Strings[0]
+ to := words[1].Strings[0]
+ words[2].TrimLeftSpaces()
+ words[2].TrimRightSpaces()
+ obj := ctx.parseMakeString(node, words[2])
+ return &callExpr{
+ object: obj,
+ name: "replace",
+ args: []starlarkExpr{&stringLiteralExpr{from}, &stringLiteralExpr{to}},
+ returnType: starlarkTypeString,
+ }
+}
+
+func (ctx *parseContext) parseWordFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
+ words := args.Split(",")
+ if len(words) != 2 {
+ return ctx.newBadExpr(node, "word function should have 2 arguments")
+ }
+ var index uint64 = 0
+ if words[0].Const() {
+ index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64)
+ }
+ if index < 1 {
+ return ctx.newBadExpr(node, "word index should be constant positive integer")
+ }
+ words[1].TrimLeftSpaces()
+ words[1].TrimRightSpaces()
+ array := ctx.parseMakeString(node, words[1])
+ if xBad, ok := array.(*badExpr); ok {
+ return xBad
+ }
+ if array.typ() != starlarkTypeList {
+ array = &callExpr{object: array, name: "split", returnType: starlarkTypeList}
+ }
+ return indexExpr{array, &intLiteralExpr{int(index - 1)}}
+}
+
+func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr {
+ if mk.Const() {
+ return &stringLiteralExpr{mk.Dump()}
+ }
+ if mkRef, ok := mk.SingleVariable(); ok {
+ return ctx.parseReference(node, mkRef)
+ }
+ // If we reached here, it's neither string literal nor a simple variable,
+ // we need a full-blown interpolation node that will generate
+ // "a%b%c" % (X, Y) for a$(X)b$(Y)c
+ xInterp := &interpolateExpr{args: make([]starlarkExpr, len(mk.Variables))}
+ for i, ref := range mk.Variables {
+ arg := ctx.parseReference(node, ref.Name)
+ if x, ok := arg.(*badExpr); ok {
+ return x
+ }
+ xInterp.args[i] = arg
+ }
+ xInterp.chunks = append(xInterp.chunks, mk.Strings...)
+ return xInterp
+}
+
+// Handles the statements whose treatment is the same in all contexts: comment,
+// assignment, variable (which is a macro call in reality) and all constructs that
+// do not handle in any context ('define directive and any unrecognized stuff).
+// Return true if we handled it.
+func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) bool {
+ handled := true
+ switch x := node.(type) {
+ case *mkparser.Comment:
+ ctx.insertComment("#" + x.Comment)
+ case *mkparser.Assignment:
+ ctx.handleAssignment(x)
+ case *mkparser.Variable:
+ ctx.handleVariable(x)
+ case *mkparser.Directive:
+ switch x.Name {
+ case "define":
+ ctx.handleDefine(x)
+ case "include", "-include":
+ ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-')
+ default:
+ handled = false
+ }
+ default:
+ ctx.errorf(x, "unsupported line %s", x.Dump())
+ }
+ return handled
+}
+
+func (ctx *parseContext) insertComment(s string) {
+ ctx.receiver.newNode(&commentNode{strings.TrimSpace(s)})
+}
+
+func (ctx *parseContext) carryAsComment(failedNode mkparser.Node) {
+ for _, line := range strings.Split(failedNode.Dump(), "\n") {
+ ctx.insertComment("# " + line)
+ }
+}
+
+// records that the given node failed to be converted and includes an explanatory message
+func (ctx *parseContext) errorf(failedNode mkparser.Node, message string, args ...interface{}) {
+ if ctx.errorLogger != nil {
+ ctx.errorLogger.NewError(message, failedNode, args...)
+ }
+ message = fmt.Sprintf(message, args...)
+ ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", message))
+ ctx.carryAsComment(failedNode)
+ ctx.script.hasErrors = true
+}
+
+func (ctx *parseContext) wrapBadExpr(xBad *badExpr) {
+ ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", xBad.message))
+ ctx.carryAsComment(xBad.node)
+}
+
+func (ctx *parseContext) loadedModulePath(path string) string {
+ // During the transition to Roboleaf some of the product configuration files
+ // will be converted and checked in while the others will be generated on the fly
+ // and run. The runner (rbcrun application) accommodates this by allowing three
+ // different ways to specify the loaded file location:
+ // 1) load(":<file>",...) loads <file> from the same directory
+ // 2) load("//path/relative/to/source/root:<file>", ...) loads <file> source tree
+ // 3) load("/absolute/path/to/<file> absolute path
+ // If the file being generated and the file it wants to load are in the same directory,
+ // generate option 1.
+ // Otherwise, if output directory is not specified, generate 2)
+ // Finally, if output directory has been specified and the file being generated and
+ // the file it wants to load from are in the different directories, generate 2) or 3):
+ // * if the file being loaded exists in the source tree, generate 2)
+ // * otherwise, generate 3)
+ // Finally, figure out the loaded module path and name and create a node for it
+ loadedModuleDir := filepath.Dir(path)
+ base := filepath.Base(path)
+ loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix
+ if loadedModuleDir == filepath.Dir(ctx.script.mkFile) {
+ return ":" + loadedModuleName
+ }
+ if ctx.outputDir == "" {
+ return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
+ }
+ if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil {
+ return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
+ }
+ return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName)
+}
+
+func (ss *StarlarkScript) String() string {
+ return NewGenerateContext(ss).emit()
+}
+
+func (ss *StarlarkScript) SubConfigFiles() []string {
+ var subs []string
+ for _, src := range ss.inherited {
+ subs = append(subs, src.originalPath)
+ }
+ return subs
+}
+
+func (ss *StarlarkScript) HasErrors() bool {
+ return ss.hasErrors
+}
+
+// Convert reads and parses a makefile. If successful, parsed tree
+// is returned and then can be passed to String() to get the generated
+// Starlark file.
+func Convert(req Request) (*StarlarkScript, error) {
+ reader := req.Reader
+ if reader == nil {
+ mkContents, err := ioutil.ReadFile(req.MkFile)
+ if err != nil {
+ return nil, err
+ }
+ reader = bytes.NewBuffer(mkContents)
+ }
+ parser := mkparser.NewParser(req.MkFile, reader)
+ nodes, errs := parser.Parse()
+ if len(errs) > 0 {
+ for _, e := range errs {
+ fmt.Fprintln(os.Stderr, "ERROR:", e)
+ }
+ return nil, fmt.Errorf("bad makefile %s", req.MkFile)
+ }
+ starScript := &StarlarkScript{
+ moduleName: moduleNameForFile(req.MkFile),
+ mkFile: req.MkFile,
+ topDir: req.RootDir,
+ traceCalls: req.TraceCalls,
+ warnPartialSuccess: req.WarnPartialSuccess,
+ }
+ ctx := newParseContext(starScript, nodes)
+ ctx.outputSuffix = req.OutputSuffix
+ ctx.outputDir = req.OutputDir
+ ctx.errorLogger = req.ErrorLogger
+ if len(req.TracedVariables) > 0 {
+ ctx.tracedVariables = make(map[string]bool)
+ for _, v := range req.TracedVariables {
+ ctx.tracedVariables[v] = true
+ }
+ }
+ ctx.pushReceiver(starScript)
+ for ctx.hasNodes() && ctx.fatalError == nil {
+ node := ctx.getNode()
+ if ctx.handleSimpleStatement(node) {
+ continue
+ }
+ switch x := node.(type) {
+ case *mkparser.Directive:
+ switch x.Name {
+ case "ifeq", "ifneq", "ifdef", "ifndef":
+ ctx.handleIfBlock(x)
+ default:
+ ctx.errorf(x, "unexpected directive %s", x.Name)
+ }
+ default:
+ ctx.errorf(x, "unsupported line")
+ }
+ }
+ if ctx.fatalError != nil {
+ return nil, ctx.fatalError
+ }
+ return starScript, nil
+}
+
+func Launcher(path, name string) string {
+ var buf bytes.Buffer
+ fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
+ fmt.Fprintf(&buf, "load(%q, \"init\")\n", path)
+ fmt.Fprintf(&buf, "g, config = %s(%q, init)\n", cfnMain, name)
+ fmt.Fprintf(&buf, "%s(g, config)\n", cfnPrintVars)
+ return buf.String()
+}
+
+func MakePath2ModuleName(mkPath string) string {
+ return strings.TrimSuffix(mkPath, filepath.Ext(mkPath))
+}