Revert "Refactor rate_limit.go for more clarify"

This reverts commit 69f3b3e9460f4ba41fd82c005311c8c50c88936a.

Caused rare deadlocks.

Bug: 64536066
Bug: 64813447
Change-Id: Ieb1b931bb2c0afdd8bf8edbfc32c373df3c08d8d
diff --git a/cmd/soong_zip/rate_limit.go b/cmd/soong_zip/rate_limit.go
index 04102b7..9e95bc1 100644
--- a/cmd/soong_zip/rate_limit.go
+++ b/cmd/soong_zip/rate_limit.go
@@ -15,54 +15,71 @@
 package main
 
 import (
-	"fmt"
 	"runtime"
 )
 
 type RateLimit struct {
-	requests    chan request
-	completions chan int64
-
-	stop chan struct{}
+	requests chan struct{}
+	finished chan int
+	released chan int
+	stop     chan struct{}
 }
 
-type request struct {
-	size     int64
-	serviced chan struct{}
-}
-
-// NewRateLimit starts a new rate limiter that permits the usage of up to <capacity> at once,
-// except when no capacity is in use, in which case the first caller is always permitted
-func NewRateLimit(capacity int64) *RateLimit {
-	ret := &RateLimit{
-		requests:    make(chan request),
-		completions: make(chan int64),
-
-		stop: make(chan struct{}),
+// NewRateLimit starts a new rate limiter with maxExecs number of executions
+// allowed to happen at a time. If maxExecs is <= 0, it will default to the
+// number of logical CPUs on the system.
+//
+// With Finish and Release, we'll keep track of outstanding buffer sizes to be
+// written. If that size goes above maxMem, we'll prevent starting new
+// executions.
+//
+// The total memory use may be higher due to current executions. This just
+// prevents runaway memory use due to slower writes.
+func NewRateLimit(maxExecs int, maxMem int64) *RateLimit {
+	if maxExecs <= 0 {
+		maxExecs = runtime.NumCPU()
+	}
+	if maxMem <= 0 {
+		// Default to 512MB
+		maxMem = 512 * 1024 * 1024
 	}
 
-	go ret.monitorChannels(capacity)
+	ret := &RateLimit{
+		requests: make(chan struct{}),
+
+		// Let all of the pending executions to mark themselves as finished,
+		// even if our goroutine isn't processing input.
+		finished: make(chan int, maxExecs),
+
+		released: make(chan int),
+		stop:     make(chan struct{}),
+	}
+
+	go ret.goFunc(maxExecs, maxMem)
 
 	return ret
 }
 
-// RequestExecution blocks until another execution of size <size> can be allowed to run.
-func (r *RateLimit) Request(size int64) {
-	request := request{
-		size:     size,
-		serviced: make(chan struct{}, 1),
-	}
-
-	// wait for the request to be received
-	r.requests <- request
-
-	// wait for the request to be accepted
-	<-request.serviced
+// RequestExecution blocks until another execution can be allowed to run.
+func (r *RateLimit) RequestExecution() Execution {
+	<-r.requests
+	return r.finished
 }
 
-// Finish declares the completion of an execution of size <size>
-func (r *RateLimit) Finish(size int64) {
-	r.completions <- size
+type Execution chan<- int
+
+// Finish will mark your execution as finished, and allow another request to be
+// approved.
+//
+// bufferSize may be specified to count memory buffer sizes, and must be
+// matched with calls to RateLimit.Release to mark the buffers as released.
+func (e Execution) Finish(bufferSize int) {
+	e <- bufferSize
+}
+
+// Call Release when finished with a buffer recorded with Finish.
+func (r *RateLimit) Release(bufferSize int) {
+	r.released <- bufferSize
 }
 
 // Stop the background goroutine
@@ -70,83 +87,29 @@
 	close(r.stop)
 }
 
-// monitorChannels processes incoming requests from channels
-func (r *RateLimit) monitorChannels(capacity int64) {
-	var usedCapacity int64
-	var currentRequest *request
+func (r *RateLimit) goFunc(maxExecs int, maxMem int64) {
+	var curExecs int
+	var curMemory int64
 
 	for {
-		var requests chan request
-		if currentRequest == nil {
-			// If we don't already have a queued request, then we should check for a new request
+		var requests chan struct{}
+		if curExecs < maxExecs && curMemory < maxMem {
 			requests = r.requests
 		}
 
 		select {
-		case newRequest := <-requests:
-			currentRequest = &newRequest
-			break
-		case amountCompleted := <-r.completions:
-			usedCapacity -= amountCompleted
-			if usedCapacity < 0 {
-				panic(fmt.Sprintf("usedCapacity < 0: %v", usedCapacity))
+		case requests <- struct{}{}:
+			curExecs++
+		case amount := <-r.finished:
+			curExecs--
+			curMemory += int64(amount)
+			if curExecs < 0 {
+				panic("curExecs < 0")
 			}
+		case amount := <-r.released:
+			curMemory -= int64(amount)
 		case <-r.stop:
 			return
 		}
-
-		if currentRequest != nil {
-			accepted := false
-			if usedCapacity == 0 {
-				accepted = true
-			} else {
-				if capacity >= usedCapacity+currentRequest.size {
-					accepted = true
-				}
-			}
-			if accepted {
-				usedCapacity += currentRequest.size
-				currentRequest.serviced <- struct{}{}
-				currentRequest = nil
-			}
-		}
 	}
 }
-
-// A CPURateLimiter limits the number of active calls based on CPU requirements
-type CPURateLimiter struct {
-	impl *RateLimit
-}
-
-func NewCPURateLimiter(capacity int64) *CPURateLimiter {
-	if capacity <= 0 {
-		capacity = int64(runtime.NumCPU())
-	}
-	impl := NewRateLimit(capacity)
-	return &CPURateLimiter{impl: impl}
-}
-
-func (e CPURateLimiter) Request() {
-	e.impl.Request(1)
-}
-
-func (e CPURateLimiter) Finish() {
-	e.impl.Finish(1)
-}
-
-func (e CPURateLimiter) Stop() {
-	e.impl.Stop()
-}
-
-// A MemoryRateLimiter limits the number of active calls based on Memory requirements
-type MemoryRateLimiter struct {
-	*RateLimit
-}
-
-func NewMemoryRateLimiter(capacity int64) *MemoryRateLimiter {
-	if capacity <= 0 {
-		capacity = 512 * 1024 * 1024 // 512MB
-	}
-	impl := NewRateLimit(capacity)
-	return &MemoryRateLimiter{RateLimit: impl}
-}