Upgrade libm.

This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies
the set of functions we support on ARM, MIPS, and x86, fixes "long double",
adds ISO C99 support, and adds basic unit tests.

It turns out that our "long double" functions have always been broken
for non-normal numbers. This patch fixes that by not using the upstream
implementations and just forwarding to the regular "double" implementation
instead (since "long double" on Android is just "double" anyway, which is
what BSD doesn't support).

All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64.

Bug: 3169850
Bug: 8012787
Bug: https://code.google.com/p/android/issues/detail?id=6697
Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
diff --git a/libm/upstream-freebsd/lib/msun/src/e_j0f.c b/libm/upstream-freebsd/lib/msun/src/e_j0f.c
new file mode 100644
index 0000000..c45faf3
--- /dev/null
+++ b/libm/upstream-freebsd/lib/msun/src/e_j0f.c
@@ -0,0 +1,337 @@
+/* e_j0f.c -- float version of e_j0.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "math.h"
+#include "math_private.h"
+
+static float pzerof(float), qzerof(float);
+
+static const float
+huge 	= 1e30,
+one	= 1.0,
+invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
+tpi      =  6.3661974669e-01, /* 0x3f22f983 */
+ 		/* R0/S0 on [0, 2.00] */
+R02  =  1.5625000000e-02, /* 0x3c800000 */
+R03  = -1.8997929874e-04, /* 0xb947352e */
+R04  =  1.8295404516e-06, /* 0x35f58e88 */
+R05  = -4.6183270541e-09, /* 0xb19eaf3c */
+S01  =  1.5619102865e-02, /* 0x3c7fe744 */
+S02  =  1.1692678527e-04, /* 0x38f53697 */
+S03  =  5.1354652442e-07, /* 0x3509daa6 */
+S04  =  1.1661400734e-09; /* 0x30a045e8 */
+
+static const float zero = 0.0;
+
+float
+__ieee754_j0f(float x)
+{
+	float z, s,c,ss,cc,r,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return one/(x*x);
+	x = fabsf(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = sinf(x);
+		c = cosf(x);
+		ss = s-c;
+		cc = s+c;
+		if(ix<0x7f000000) {  /* make sure x+x not overflow */
+		    z = -cosf(x+x);
+		    if ((s*c)<zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
+		else {
+		    u = pzerof(x); v = qzerof(x);
+		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
+		}
+		return z;
+	}
+	if(ix<0x39000000) {	/* |x| < 2**-13 */
+	    if(huge+x>one) {	/* raise inexact if x != 0 */
+	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
+	        else 	      return one - (float)0.25*x*x;
+	    }
+	}
+	z = x*x;
+	r =  z*(R02+z*(R03+z*(R04+z*R05)));
+	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
+	if(ix < 0x3F800000) {	/* |x| < 1.00 */
+	    return one + z*((float)-0.25+(r/s));
+	} else {
+	    u = (float)0.5*x;
+	    return((one+u)*(one-u)+z*(r/s));
+	}
+}
+
+static const float
+u00  = -7.3804296553e-02, /* 0xbd9726b5 */
+u01  =  1.7666645348e-01, /* 0x3e34e80d */
+u02  = -1.3818567619e-02, /* 0xbc626746 */
+u03  =  3.4745343146e-04, /* 0x39b62a69 */
+u04  = -3.8140706238e-06, /* 0xb67ff53c */
+u05  =  1.9559013964e-08, /* 0x32a802ba */
+u06  = -3.9820518410e-11, /* 0xae2f21eb */
+v01  =  1.2730483897e-02, /* 0x3c509385 */
+v02  =  7.6006865129e-05, /* 0x389f65e0 */
+v03  =  2.5915085189e-07, /* 0x348b216c */
+v04  =  4.4111031494e-10; /* 0x2ff280c2 */
+
+float
+__ieee754_y0f(float x)
+{
+	float z, s,c,ss,cc,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+        ix = 0x7fffffff&hx;
+    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
+	if(ix>=0x7f800000) return  one/(x+x*x);
+        if(ix==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+         * where x0 = x-pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+         *                      =  1/sqrt(2) * (sin(x) + cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                s = sinf(x);
+                c = cosf(x);
+                ss = s-c;
+                cc = s+c;
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+                if(ix<0x7f000000) {  /* make sure x+x not overflow */
+                    z = -cosf(x+x);
+                    if ((s*c)<zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+                if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
+                else {
+                    u = pzerof(x); v = qzerof(x);
+                    z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
+                }
+                return z;
+	}
+	if(ix<=0x32000000) {	/* x < 2**-27 */
+	    return(u00 + tpi*__ieee754_logf(x));
+	}
+	z = x*x;
+	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+	return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * 	pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+  0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+};
+static const float pS8[5] = {
+  1.1653436279e+02, /* 0x42e91198 */
+  3.8337448730e+03, /* 0x456f9beb */
+  4.0597855469e+04, /* 0x471e95db */
+  1.1675296875e+05, /* 0x47e4087c */
+  4.7627726562e+04, /* 0x473a0bba */
+};
+static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+};
+static const float pS5[5] = {
+  6.0753936768e+01, /* 0x42730408 */
+  1.0512523193e+03, /* 0x44836813 */
+  5.9789707031e+03, /* 0x45bad7c4 */
+  9.6254453125e+03, /* 0x461665c8 */
+  2.4060581055e+03, /* 0x451660ee */
+};
+
+static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+};
+static const float pS3[5] = {
+  3.5856033325e+01, /* 0x420f6c94 */
+  3.6151397705e+02, /* 0x43b4c1ca */
+  1.1936077881e+03, /* 0x44953373 */
+  1.1279968262e+03, /* 0x448cffe6 */
+  1.7358093262e+02, /* 0x432d94b8 */
+};
+
+static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+};
+static const float pS2[5] = {
+  2.2220300674e+01, /* 0x41b1c32d */
+  1.3620678711e+02, /* 0x430834f0 */
+  2.7047027588e+02, /* 0x43873c32 */
+  1.5387539673e+02, /* 0x4319e01a */
+  1.4657617569e+01, /* 0x416a859a */
+};
+
+	static float pzerof(float x)
+{
+	const float *p,*q;
+	float z,r,s;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = pR8; q= pS8;}
+	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
+	else if(ix>=0x4036db68){p = pR3; q= pS3;}
+	else if(ix>=0x40000000){p = pR2; q= pS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+	return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * 	qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+  0.0000000000e+00, /* 0x00000000 */
+  7.3242187500e-02, /* 0x3d960000 */
+  1.1768206596e+01, /* 0x413c4a93 */
+  5.5767340088e+02, /* 0x440b6b19 */
+  8.8591972656e+03, /* 0x460a6cca */
+  3.7014625000e+04, /* 0x471096a0 */
+};
+static const float qS8[6] = {
+  1.6377603149e+02, /* 0x4323c6aa */
+  8.0983447266e+03, /* 0x45fd12c2 */
+  1.4253829688e+05, /* 0x480b3293 */
+  8.0330925000e+05, /* 0x49441ed4 */
+  8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+};
+
+static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+  1.8408595828e-11, /* 0x2da1ec79 */
+  7.3242180049e-02, /* 0x3d95ffff */
+  5.8356351852e+00, /* 0x40babd86 */
+  1.3511157227e+02, /* 0x43071c90 */
+  1.0272437744e+03, /* 0x448067cd */
+  1.9899779053e+03, /* 0x44f8bf4b */
+};
+static const float qS5[6] = {
+  8.2776611328e+01, /* 0x42a58da0 */
+  2.0778142090e+03, /* 0x4501dd07 */
+  1.8847289062e+04, /* 0x46933e94 */
+  5.6751113281e+04, /* 0x475daf1d */
+  3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+};
+
+static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+  4.3774099900e-09, /* 0x3196681b */
+  7.3241114616e-02, /* 0x3d95ff70 */
+  3.3442313671e+00, /* 0x405607e3 */
+  4.2621845245e+01, /* 0x422a7cc5 */
+  1.7080809021e+02, /* 0x432acedf */
+  1.6673394775e+02, /* 0x4326bbe4 */
+};
+static const float qS3[6] = {
+  4.8758872986e+01, /* 0x42430916 */
+  7.0968920898e+02, /* 0x44316c1c */
+  3.7041481934e+03, /* 0x4567825f */
+  6.4604252930e+03, /* 0x45c9e367 */
+  2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+};
+
+static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+  1.5044444979e-07, /* 0x342189db */
+  7.3223426938e-02, /* 0x3d95f62a */
+  1.9981917143e+00, /* 0x3fffc4bf */
+  1.4495602608e+01, /* 0x4167edfd */
+  3.1666231155e+01, /* 0x41fd5471 */
+  1.6252708435e+01, /* 0x4182058c */
+};
+static const float qS2[6] = {
+  3.0365585327e+01, /* 0x41f2ecb8 */
+  2.6934811401e+02, /* 0x4386ac8f */
+  8.4478375244e+02, /* 0x44533229 */
+  8.8293585205e+02, /* 0x445cbbe5 */
+  2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+};
+
+	static float qzerof(float x)
+{
+	const float *p,*q;
+	float s,r,z;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = qR8; q= qS8;}
+	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
+	else if(ix>=0x4036db68){p = qR3; q= qS3;}
+	else if(ix>=0x40000000){p = qR2; q= qS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+	return (-(float).125 + r/s)/x;
+}