Upgrade libm.

This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies
the set of functions we support on ARM, MIPS, and x86, fixes "long double",
adds ISO C99 support, and adds basic unit tests.

It turns out that our "long double" functions have always been broken
for non-normal numbers. This patch fixes that by not using the upstream
implementations and just forwarding to the regular "double" implementation
instead (since "long double" on Android is just "double" anyway, which is
what BSD doesn't support).

All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64.

Bug: 3169850
Bug: 8012787
Bug: https://code.google.com/p/android/issues/detail?id=6697
Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
diff --git a/libm/upstream-freebsd/lib/msun/src/e_j0.c b/libm/upstream-freebsd/lib/msun/src/e_j0.c
new file mode 100644
index 0000000..8320f25
--- /dev/null
+++ b/libm/upstream-freebsd/lib/msun/src/e_j0.c
@@ -0,0 +1,381 @@
+
+/* @(#)e_j0.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/* __ieee754_j0(x), __ieee754_y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ *	2. Reduce x to |x| since j0(x)=j0(-x),  and
+ *	   for x in (0,2)
+ *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
+ *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ *	   for x in (2,inf)
+ * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *	   as follow:
+ *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ *			= 1/sqrt(2) * (cos(x) + sin(x))
+ *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ *			= 1/sqrt(2) * (sin(x) - cos(x))
+ * 	   (To avoid cancellation, use
+ *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * 	    to compute the worse one.)
+ *	   
+ *	3 Special cases
+ *		j0(nan)= nan
+ *		j0(0) = 1
+ *		j0(inf) = 0
+ *		
+ * Method -- y0(x):
+ *	1. For x<2.
+ *	   Since 
+ *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ *	   We use the following function to approximate y0,
+ *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ *	   where 
+ *		U(z) = u00 + u01*z + ... + u06*z^6
+ *		V(z) = 1  + v01*z + ... + v04*z^4
+ *	   with absolute approximation error bounded by 2**-72.
+ *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ *	2. For x>=2.
+ * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *	   by the method mentioned above.
+ *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+static double pzero(double), qzero(double);
+
+static const double
+huge 	= 1e300,
+one	= 1.0,
+invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+ 		/* R0/S0 on [0, 2.00] */
+R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
+R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
+R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
+R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
+S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
+S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
+S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
+S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
+
+static const double zero = 0.0;
+
+double
+__ieee754_j0(double x)
+{
+	double z, s,c,ss,cc,r,u,v;
+	int32_t hx,ix;
+
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) return one/(x*x);
+	x = fabs(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = sin(x);
+		c = cos(x);
+		ss = s-c;
+		cc = s+c;
+		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+		    z = -cos(x+x);
+		    if ((s*c)<zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
+		else {
+		    u = pzero(x); v = qzero(x);
+		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
+		}
+		return z;
+	}
+	if(ix<0x3f200000) {	/* |x| < 2**-13 */
+	    if(huge+x>one) {	/* raise inexact if x != 0 */
+	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */
+	        else 	      return one - 0.25*x*x;
+	    }
+	}
+	z = x*x;
+	r =  z*(R02+z*(R03+z*(R04+z*R05)));
+	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
+	if(ix < 0x3FF00000) {	/* |x| < 1.00 */
+	    return one + z*(-0.25+(r/s));
+	} else {
+	    u = 0.5*x;
+	    return((one+u)*(one-u)+z*(r/s));
+	}
+}
+
+static const double
+u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
+u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
+u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
+u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
+u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
+u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
+u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
+v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
+v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
+v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
+v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
+
+double
+__ieee754_y0(double x)
+{
+	double z, s,c,ss,cc,u,v;
+	int32_t hx,ix,lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+        ix = 0x7fffffff&hx;
+    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
+	if(ix>=0x7ff00000) return  one/(x+x*x); 
+        if((ix|lx)==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+         * where x0 = x-pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+         *                      =  1/sqrt(2) * (sin(x) + cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                s = sin(x);
+                c = cos(x);
+                ss = s-c;
+                cc = s+c;
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+                    z = -cos(x+x);
+                    if ((s*c)<zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
+                else {
+                    u = pzero(x); v = qzero(x);
+                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
+                }
+                return z;
+	}
+	if(ix<=0x3e400000) {	/* x < 2**-27 */
+	    return(u00 + tpi*__ieee754_log(x));
+	}
+	z = x*x;
+	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+	return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * 	pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+};
+static const double pS8[5] = {
+  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+};
+
+static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+};
+static const double pS5[5] = {
+  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+};
+
+static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+};
+static const double pS3[5] = {
+  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+};
+
+static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+};
+static const double pS2[5] = {
+  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+};
+
+	static double pzero(double x)
+{
+	const double *p,*q;
+	double z,r,s;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = pR8; q= pS8;}
+	else if(ix>=0x40122E8B){p = pR5; q= pS5;}
+	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
+	else if(ix>=0x40000000){p = pR2; q= pS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+	return one+ r/s;
+}
+		
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * 	qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+};
+static const double qS8[6] = {
+  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
+  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
+  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
+  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
+  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
+ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+};
+
+static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+};
+static const double qS5[6] = {
+  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
+  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
+  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
+  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
+  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
+ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+};
+
+static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+};
+static const double qS3[6] = {
+  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
+  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
+  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
+  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
+  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
+ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+};
+
+static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+};
+static const double qS2[6] = {
+  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
+  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
+  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
+  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
+  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
+ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+};
+
+	static double qzero(double x)
+{
+	const double *p,*q;
+	double s,r,z;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = qR8; q= qS8;}
+	else if(ix>=0x40122E8B){p = qR5; q= qS5;}
+	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
+	else if(ix>=0x40000000){p = qR2; q= qS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+	return (-.125 + r/s)/x;
+}