libc: ARM64: update memset/strlen/memcpy/memmove to newlib/cortex-strings

* Bionic benchmarks results at the bottom

* This is a squash of the following commits:

libc: ARM64: optimize memset.

 This is an optimized memset for AArch64.  Memset is split into 4 main
 cases: small sets of up to 16 bytes, medium of 16..96 bytes which are
 fully unrolled.  Large memsets of more than 96 bytes align the
 destination and use an unrolled loop processing 64 bytes per
 iteration.  Memsets of zero of more than 256 use the dc zva
 instruction, and there are faster versions for the common ZVA sizes 64
 or 128.  STP of Q registers is used to reduce codesize without loss of
 performance.

Change-Id: I0c5b5ec5ab8a1fd0f23eee8fbacada0be08e841f

libc: ARM64: improve performance in strlen

Change-Id: Ic20f93a0052a49bd76cd6795f51e8606ccfbf11c

libc: ARM64: Optimize memcpy.

 This is an optimized memcpy for AArch64.  Copies are split into 3 main
 cases: small copies of up to 16 bytes, medium copies of 17..96 bytes
 which are fully unrolled.  Large copies of more than 96 bytes align
 the destination and use an unrolled loop processing 64 bytes per
 iteration.  In order to share code with memmove, small and medium
 copies read all data before writing, allowing any kind of overlap.  On
 a random copy test memcpy is 40.8% faster on A57 and 28.4% on A53.

Change-Id: Ibb9483e45bbc0e8ca3d5ce98a31c55dfd8a5ac28

libc: AArch64: Tune memcpy

* Further tuning for performance.

Change-Id: Id08eaab885f9743fa7575077924a947c1b88e4ff

libc: ARM64: optimize memmove for Cortex-A53

* Sadly does not work on Denver or Kryo, so can't go to generic

 This is an optimized memmove for AArch64.  All copies of up to 96
 bytes and all backward copies are done by the new memcpy.  The only
 remaining case is large forward copies which are done in the same way
 as the memcpy loop, but copying from the end rather than the start.

Tested on the Nextbit Robin with MSM8992 (Snapdragon 808):

Before
BM_string_memcmp/8                          1000k         27    0.286 GiB/s
BM_string_memcmp/64                           50M         20    3.053 GiB/s
BM_string_memcmp/512                          20M        126    4.060 GiB/s
BM_string_memcmp/1024                         10M        234    4.372 GiB/s
BM_string_memcmp/8Ki                        1000k       1726    4.745 GiB/s
BM_string_memcmp/16Ki                        500k       3711    4.415 GiB/s
BM_string_memcmp/32Ki                        200k       8276    3.959 GiB/s
BM_string_memcmp/64Ki                        100k      16351    4.008 GiB/s
BM_string_memcpy/8                          1000k         13    0.612 GiB/s
BM_string_memcpy/64                         1000k          8    7.187 GiB/s
BM_string_memcpy/512                          50M         38   13.311 GiB/s
BM_string_memcpy/1024                         20M         86   11.858 GiB/s
BM_string_memcpy/8Ki                           5M        620   13.203 GiB/s
BM_string_memcpy/16Ki                       1000k       1265   12.950 GiB/s
BM_string_memcpy/32Ki                        500k       2977   11.004 GiB/s
BM_string_memcpy/64Ki                        500k       8003    8.188 GiB/s
BM_string_memmove/8                         1000k         11    0.684 GiB/s
BM_string_memmove/64                        1000k         16    3.855 GiB/s
BM_string_memmove/512                         50M         57    8.915 GiB/s
BM_string_memmove/1024                        20M        117    8.720 GiB/s
BM_string_memmove/8Ki                          2M        853    9.594 GiB/s
BM_string_memmove/16Ki                      1000k       1731    9.462 GiB/s
BM_string_memmove/32Ki                       500k       3566    9.189 GiB/s
BM_string_memmove/64Ki                       500k       7708    8.501 GiB/s
BM_string_memset/8                          1000k         16    0.487 GiB/s
BM_string_memset/64                         1000k         16    3.995 GiB/s
BM_string_memset/512                          50M         37   13.489 GiB/s
BM_string_memset/1024                         50M         58   17.405 GiB/s
BM_string_memset/8Ki                           5M        451   18.160 GiB/s
BM_string_memset/16Ki                          2M        883   18.554 GiB/s
BM_string_memset/32Ki                       1000k       2181   15.022 GiB/s
BM_string_memset/64Ki                        500k       4563   14.362 GiB/s
BM_string_strlen/8                          1000k          8    0.965 GiB/s
BM_string_strlen/64                         1000k         16    3.855 GiB/s
BM_string_strlen/512                          20M         92    5.540 GiB/s
BM_string_strlen/1024                         10M        167    6.111 GiB/s
BM_string_strlen/8Ki                        1000k       1237    6.620 GiB/s
BM_string_strlen/16Ki                       1000k       2765    5.923 GiB/s
BM_string_strlen/32Ki                        500k       6135    5.341 GiB/s
BM_string_strlen/64Ki                        200k      13168    4.977 GiB/s

After
BM_string_memcmp/8                          1000k         21    0.369 GiB/s
BM_string_memcmp/64                         1000k         28    2.272 GiB/s
BM_string_memcmp/512                          20M        128    3.983 GiB/s
BM_string_memcmp/1024                         10M        234    4.375 GiB/s
BM_string_memcmp/8Ki                        1000k       1732    4.728 GiB/s
BM_string_memcmp/16Ki                        500k       3485    4.701 GiB/s
BM_string_memcmp/32Ki                        500k       7031    4.660 GiB/s
BM_string_memcmp/64Ki                        200k      14296    4.584 GiB/s
BM_string_memcpy/8                          1000k          5    1.458 GiB/s
BM_string_memcpy/64                         1000k          7    8.952 GiB/s
BM_string_memcpy/512                          50M         36   13.907 GiB/s
BM_string_memcpy/1024                         20M         80   12.750 GiB/s
BM_string_memcpy/8Ki                           5M        572   14.307 GiB/s
BM_string_memcpy/16Ki                       1000k       1165   14.053 GiB/s
BM_string_memcpy/32Ki                        500k       3141   10.430 GiB/s
BM_string_memcpy/64Ki                        500k       7008    9.351 GiB/s
BM_string_memmove/8                           50M          7    1.074 GiB/s
BM_string_memmove/64                        1000k          9    6.593 GiB/s
BM_string_memmove/512                         50M         37   13.502 GiB/s
BM_string_memmove/1024                        20M         80   12.656 GiB/s
BM_string_memmove/8Ki                          5M        573   14.281 GiB/s
BM_string_memmove/16Ki                      1000k       1168   14.018 GiB/s
BM_string_memmove/32Ki                      1000k       2825   11.599 GiB/s
BM_string_memmove/64Ki                       500k       6548   10.008 GiB/s
BM_string_memset/8                          1000k          7    1.038 GiB/s
BM_string_memset/64                         1000k          8    7.151 GiB/s
BM_string_memset/512                        1000k         29   17.272 GiB/s
BM_string_memset/1024                         50M         53   18.969 GiB/s
BM_string_memset/8Ki                           5M        424   19.300 GiB/s
BM_string_memset/16Ki                          2M        846   19.350 GiB/s
BM_string_memset/32Ki                       1000k       2028   16.156 GiB/s
BM_string_memset/64Ki                        500k       4514   14.517 GiB/s
BM_string_strlen/8                          1000k          7    1.120 GiB/s
BM_string_strlen/64                         1000k         16    3.918 GiB/s
BM_string_strlen/512                          50M         64    7.894 GiB/s
BM_string_strlen/1024                         20M        104    9.815 GiB/s
BM_string_strlen/8Ki                           5M        664   12.337 GiB/s
BM_string_strlen/16Ki                       1000k       1291   12.682 GiB/s
BM_string_strlen/32Ki                       1000k       2940   11.143 GiB/s
BM_string_strlen/64Ki                        500k       6440   10.175 GiB/s

Change-Id: I635bd2798a755256f748b2af19b1a56fb85a40c6
diff --git a/libc/arch-arm64/generic/bionic/strlen.S b/libc/arch-arm64/generic/bionic/strlen.S
index 3bd9809..6e540fc 100644
--- a/libc/arch-arm64/generic/bionic/strlen.S
+++ b/libc/arch-arm64/generic/bionic/strlen.S
@@ -1,16 +1,16 @@
-/* Copyright (c) 2014, Linaro Limited
+/* Copyright (c) 2013-2015, Linaro Limited
    All rights reserved.
 
    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
        * Redistributions of source code must retain the above copyright
-         notice, this list of conditions and the following disclaimer.
+	 notice, this list of conditions and the following disclaimer.
        * Redistributions in binary form must reproduce the above copyright
-         notice, this list of conditions and the following disclaimer in the
-         documentation and/or other materials provided with the distribution.
+	 notice, this list of conditions and the following disclaimer in the
+	 documentation and/or other materials provided with the distribution.
        * Neither the name of the Linaro nor the
-         names of its contributors may be used to endorse or promote products
-         derived from this software without specific prior written permission.
+	 names of its contributors may be used to endorse or promote products
+	 derived from this software without specific prior written permission.
 
    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
@@ -22,16 +22,19 @@
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
 
 /* Assumptions:
  *
- * ARMv8-a, AArch64
+ * ARMv8-a, AArch64, unaligned accesses, min page size 4k.
  */
 
 #include <private/bionic_asm.h>
 
+/* To test the page crossing code path more thoroughly, compile with
+   -DTEST_PAGE_CROSS - this will force all calls through the slower
+   entry path.  This option is not intended for production use.	 */
+
 /* Arguments and results.  */
 #define srcin		x0
 #define len		x0
@@ -40,87 +43,185 @@
 #define src		x1
 #define data1		x2
 #define data2		x3
-#define data2a		x4
-#define has_nul1	x5
-#define has_nul2	x6
-#define tmp1		x7
-#define tmp2		x8
-#define tmp3		x9
-#define tmp4		x10
-#define zeroones	x11
-#define pos		x12
+#define has_nul1	x4
+#define has_nul2	x5
+#define tmp1		x4
+#define tmp2		x5
+#define tmp3		x6
+#define tmp4		x7
+#define zeroones	x8
+
+#define L(l) .L ## l
+
+	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
+	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
+	   can be done in parallel across the entire word. A faster check
+	   (X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives
+	   false hits for characters 129..255.	*/
 
 #define REP8_01 0x0101010101010101
 #define REP8_7f 0x7f7f7f7f7f7f7f7f
 #define REP8_80 0x8080808080808080
 
-	/* Start of critial section -- keep to one 64Byte cache line.  */
-ENTRY(strlen)
-	mov	zeroones, #REP8_01
-	bic	src, srcin, #15
-	ands	tmp1, srcin, #15
-	b.ne	.Lmisaligned
-	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
-	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
-	   can be done in parallel across the entire word.  */
-	/* The inner loop deals with two Dwords at a time.  This has a
-	   slightly higher start-up cost, but we should win quite quickly,
-	   especially on cores with a high number of issue slots per
-	   cycle, as we get much better parallelism out of the operations.  */
-.Lloop:
-	ldp	data1, data2, [src], #16
-.Lrealigned:
-	sub	tmp1, data1, zeroones
-	orr	tmp2, data1, #REP8_7f
-	sub	tmp3, data2, zeroones
-	orr	tmp4, data2, #REP8_7f
-	bic	has_nul1, tmp1, tmp2
-	bics	has_nul2, tmp3, tmp4
-	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */
-	b.eq	.Lloop
-	/* End of critical section -- keep to one 64Byte cache line.  */
-
-	sub	len, src, srcin
-	cbz	has_nul1, .Lnul_in_data2
-#ifdef __AARCH64EB__
-	mov	data2, data1
+#ifdef TEST_PAGE_CROSS
+# define MIN_PAGE_SIZE 15
+#else
+# define MIN_PAGE_SIZE 4096
 #endif
-	sub	len, len, #8
-	mov	has_nul2, has_nul1
-.Lnul_in_data2:
+
+	/* Since strings are short on average, we check the first 16 bytes
+	   of the string for a NUL character.  In order to do an unaligned ldp
+	   safely we have to do a page cross check first.  If there is a NUL
+	   byte we calculate the length from the 2 8-byte words using
+	   conditional select to reduce branch mispredictions (it is unlikely
+	   strlen will be repeatedly called on strings with the same length).
+
+	   If the string is longer than 16 bytes, we align src so don't need
+	   further page cross checks, and process 32 bytes per iteration
+	   using the fast NUL check.  If we encounter non-ASCII characters,
+	   fallback to a second loop using the full NUL check.
+
+	   If the page cross check fails, we read 16 bytes from an aligned
+	   address, remove any characters before the string, and continue
+	   in the main loop using aligned loads.  Since strings crossing a
+	   page in the first 16 bytes are rare (probability of
+	   16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
+
+	   AArch64 systems have a minimum page size of 4k.  We don't bother
+	   checking for larger page sizes - the cost of setting up the correct
+	   page size is just not worth the extra gain from a small reduction in
+	   the cases taking the slow path.  Note that we only care about
+	   whether the first fetch, which may be misaligned, crosses a page
+	   boundary.  */
+
+ENTRY(strlen)
+	and	tmp1, srcin, MIN_PAGE_SIZE - 1
+	mov	zeroones, REP8_01
+	cmp	tmp1, MIN_PAGE_SIZE - 16
+	b.gt	L(page_cross)
+	ldp	data1, data2, [srcin]
 #ifdef __AARCH64EB__
 	/* For big-endian, carry propagation (if the final byte in the
-	   string is 0x01) means we cannot use has_nul directly.  The
-	   easiest way to get the correct byte is to byte-swap the data
-	   and calculate the syndrome a second time.  */
+	   string is 0x01) means we cannot use has_nul1/2 directly.
+	   Since we expect strings to be small and early-exit,
+	   byte-swap the data now so has_null1/2 will be correct.  */
+	rev	data1, data1
 	rev	data2, data2
-	sub	tmp1, data2, zeroones
-	orr	tmp2, data2, #REP8_7f
-	bic	has_nul2, tmp1, tmp2
 #endif
-	sub	len, len, #8
-	rev	has_nul2, has_nul2
-	clz	pos, has_nul2
-	add	len, len, pos, lsr #3		/* Bits to bytes.  */
+	sub	tmp1, data1, zeroones
+	orr	tmp2, data1, REP8_7f
+	sub	tmp3, data2, zeroones
+	orr	tmp4, data2, REP8_7f
+	bics	has_nul1, tmp1, tmp2
+	bic	has_nul2, tmp3, tmp4
+	ccmp	has_nul2, 0, 0, eq
+	beq	L(main_loop_entry)
+
+	/* Enter with C = has_nul1 == 0.  */
+	csel	has_nul1, has_nul1, has_nul2, cc
+	mov	len, 8
+	rev	has_nul1, has_nul1
+	clz	tmp1, has_nul1
+	csel	len, xzr, len, cc
+	add	len, len, tmp1, lsr 3
 	ret
 
-.Lmisaligned:
-	cmp	tmp1, #8
-	neg	tmp1, tmp1
-	ldp	data1, data2, [src], #16
-	lsl	tmp1, tmp1, #3		/* Bytes beyond alignment -> bits.  */
-	mov	tmp2, #~0
+	/* The inner loop processes 32 bytes per iteration and uses the fast
+	   NUL check.  If we encounter non-ASCII characters, use a second
+	   loop with the accurate NUL check.  */
+	.p2align 4
+L(main_loop_entry):
+	bic	src, srcin, 15
+	sub	src, src, 16
+L(main_loop):
+	ldp	data1, data2, [src, 32]!
+.Lpage_cross_entry:
+	sub	tmp1, data1, zeroones
+	sub	tmp3, data2, zeroones
+	orr	tmp2, tmp1, tmp3
+	tst	tmp2, zeroones, lsl 7
+	bne	1f
+	ldp	data1, data2, [src, 16]
+	sub	tmp1, data1, zeroones
+	sub	tmp3, data2, zeroones
+	orr	tmp2, tmp1, tmp3
+	tst	tmp2, zeroones, lsl 7
+	beq	L(main_loop)
+	add	src, src, 16
+1:
+	/* The fast check failed, so do the slower, accurate NUL check.	 */
+	orr	tmp2, data1, REP8_7f
+	orr	tmp4, data2, REP8_7f
+	bics	has_nul1, tmp1, tmp2
+	bic	has_nul2, tmp3, tmp4
+	ccmp	has_nul2, 0, 0, eq
+	beq	L(nonascii_loop)
+
+	/* Enter with C = has_nul1 == 0.  */
+L(tail):
 #ifdef __AARCH64EB__
-	/* Big-endian.  Early bytes are at MSB.  */
-	lsl	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */
+	/* For big-endian, carry propagation (if the final byte in the
+	   string is 0x01) means we cannot use has_nul1/2 directly.  The
+	   easiest way to get the correct byte is to byte-swap the data
+	   and calculate the syndrome a second time.  */
+	csel	data1, data1, data2, cc
+	rev	data1, data1
+	sub	tmp1, data1, zeroones
+	orr	tmp2, data1, REP8_7f
+	bic	has_nul1, tmp1, tmp2
+#else
+	csel	has_nul1, has_nul1, has_nul2, cc
+#endif
+	sub	len, src, srcin
+	rev	has_nul1, has_nul1
+	add	tmp2, len, 8
+	clz	tmp1, has_nul1
+	csel	len, len, tmp2, cc
+	add	len, len, tmp1, lsr 3
+	ret
+
+L(nonascii_loop):
+	ldp	data1, data2, [src, 16]!
+	sub	tmp1, data1, zeroones
+	orr	tmp2, data1, REP8_7f
+	sub	tmp3, data2, zeroones
+	orr	tmp4, data2, REP8_7f
+	bics	has_nul1, tmp1, tmp2
+	bic	has_nul2, tmp3, tmp4
+	ccmp	has_nul2, 0, 0, eq
+	bne	L(tail)
+	ldp	data1, data2, [src, 16]!
+	sub	tmp1, data1, zeroones
+	orr	tmp2, data1, REP8_7f
+	sub	tmp3, data2, zeroones
+	orr	tmp4, data2, REP8_7f
+	bics	has_nul1, tmp1, tmp2
+	bic	has_nul2, tmp3, tmp4
+	ccmp	has_nul2, 0, 0, eq
+	beq	L(nonascii_loop)
+	b	L(tail)
+
+	/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
+	   srcin to 0x7f, so we ignore any NUL bytes before the string.
+	   Then continue in the aligned loop.  */
+L(page_cross):
+	bic	src, srcin, 15
+	ldp	data1, data2, [src]
+	lsl	tmp1, srcin, 3
+	mov	tmp4, -1
+#ifdef __AARCH64EB__
+	/* Big-endian.	Early bytes are at MSB.	 */
+	lsr	tmp1, tmp4, tmp1	/* Shift (tmp1 & 63).  */
 #else
 	/* Little-endian.  Early bytes are at LSB.  */
-	lsr	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */
+	lsl	tmp1, tmp4, tmp1	/* Shift (tmp1 & 63).  */
 #endif
-	orr	data1, data1, tmp2
-	orr	data2a, data2, tmp2
-	csinv	data1, data1, xzr, le
-	csel	data2, data2, data2a, le
-	b	.Lrealigned
+	orr	tmp1, tmp1, REP8_80
+	orn	data1, data1, tmp1
+	orn	tmp2, data2, tmp1
+	tst	srcin, 8
+	csel	data1, data1, tmp4, eq
+	csel	data2, data2, tmp2, eq
+	b	L(page_cross_entry)
 
 END(strlen)